Some Problems in Curvature and Topology

曲率和拓扑的一些问题

基本信息

  • 批准号:
    0203164
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2005-09-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT: DMS 0203164.We have been studying problems in Riemannian geometry that concern with interplays between curvature and topology, and the major part of our work are about the controlled topology of collapsed manifolds with sectional curvature bounded in absolute value and applications to the global Riemannian geometry. For the past three years, we have made substantial progressesin this field pioneered by Cheeger-Gromov-Fukaya: we established the isomorphism finiteness result for the higher homotopy groups, the diffeomorphism finiteness result for a certain class of manifolds, and the convergence of collapsing sequences in this class. We have made a progress on investigating some rigidity phenomena for the class of closed manifolds of non-positive sectional which are not locally symmetric spaces. We have made a progress in the homeomorphism classification of positively curved manifolds whose isometry group contains a torus of large rank, and extend this result to the larger class of manifolds which only admit isometric discrete abelian group actions. We will continue our programs in these fields in the near future that represents a continuation of the work proposed three years ago for NSF Grant DMS 9971360. One of the most important developments in Riemannian geometry in the last two decades is our understanding of the Riemannian manifolds which appear to be smaller than their actual dimension (i.e collapsed). For instance, the surface of a very thin donuts looks like a circle while whose curvature and diameter are bounded. Our progress is amplified by the amazing fact that among the manifolds whose curvature and diameter are bounded, all but finitely many appear to be smaller than their actual dimension.
摘要:DMS 0203164.我们一直在研究黎曼几何中曲率与拓扑的相互作用问题,主要研究截面曲率有界的塌缩流形的控制拓扑及其在整体黎曼几何中的应用.在过去的三年中,我们在Cheeger-Gromov-福谷开创的这一领域取得了实质性的进展:我们建立了高阶同伦群的同构有限性结果,某类流形的同构有限性结果,以及这类流形中坍缩序列的收敛性。本文在研究非局部对称的非正截面闭流形类的刚性现象方面取得了进展。本文在等距群包含大秩环面的正曲流形的同胚分类方面取得了进展,并将这一结果推广到只允许等距离散交换群作用的更大的流形类.在不久的将来,我们将继续我们在这些领域的计划,这代表了三年前为NSF Grant DMS 9971360提出的工作的延续。在过去的二十年里,黎曼几何最重要的发展之一是我们对黎曼流形的理解,这些流形看起来比它们的实际维数小(即坍缩)。例如,一个非常薄的甜甜圈的表面看起来像一个圆,而其曲率和直径是有界的。我们的进展被一个惊人的事实放大了,即在曲率和直径有界的流形中,除了100%之外,所有的流形看起来都小于它们的实际尺寸。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaochun Rong其他文献

Quantitative volume space form rigidity under lower Ricci curvature bound II
里奇曲率下界 II 下的定量体积空间形式刚度
  • DOI:
    10.1090/tran/7279
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lina Chen;Xiaochun Rong;Shicheng Xu
  • 通讯作者:
    Shicheng Xu
Collapsed manifolds with local Ricci bounded covering geometry
  • DOI:
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaochun Rong
  • 通讯作者:
    Xiaochun Rong
A Bochner theorem and applications
  • DOI:
    10.1215/s0012-7094-98-09116-5
  • 发表时间:
    1998-02
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Xiaochun Rong
  • 通讯作者:
    Xiaochun Rong
Rationality of geometric signatures of complete 4-manifolds
  • DOI:
    10.1007/bf01241141
  • 发表时间:
    1995-12
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Xiaochun Rong
  • 通讯作者:
    Xiaochun Rong
Collapsed Manifolds with Bounded Sectional Curvature and Applications

Xiaochun Rong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaochun Rong', 18)}}的其他基金

Problems in Metric Riemannian Geometry
公制黎曼几何问题
  • 批准号:
    1106517
  • 财政年份:
    2011
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Some Problems in Riemannian Geometry
黎曼几何中的一些问题
  • 批准号:
    0805928
  • 财政年份:
    2008
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Positively and Non-Positively Curved Manifolds
正曲流形和非正曲流形
  • 批准号:
    0504534
  • 财政年份:
    2005
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collapsed Riemannian Manifolds and Applications
塌缩黎曼流形及其应用
  • 批准号:
    9971360
  • 财政年份:
    1999
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Collapsed Riemannian Manifolds and Applications
数学科学:塌缩黎曼流形及其应用
  • 批准号:
    9896134
  • 财政年份:
    1996
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Collapsed Riemannian Manifolds and Applications
数学科学:塌缩黎曼流形及其应用
  • 批准号:
    9626252
  • 财政年份:
    1996
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似海外基金

Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
  • 批准号:
    23H00085
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
  • 批准号:
    2303624
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Problems in Harmonic Analysis Relating to Curvature
与曲率相关的谐波分析问题
  • 批准号:
    2246906
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
  • 批准号:
    2202343
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
  • 批准号:
    2005287
  • 财政年份:
    2020
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Mass Rigidity and Curvature Problems in Mathematical Relativity
数学相对论中的质量刚度和曲率问题
  • 批准号:
    2005588
  • 财政年份:
    2020
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Geometric Problems Involving Scalar Curvature
涉及标量曲率的几何问题
  • 批准号:
    1906423
  • 财政年份:
    2019
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Negative Curvature in Fiber Bundles and Counting Problems
纤维束的负曲率和计数问题
  • 批准号:
    1708279
  • 财政年份:
    2017
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Negative Curvature in Fiber Bundles and Counting Problems
纤维束的负曲率和计数问题
  • 批准号:
    1744551
  • 财政年份:
    2017
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Problems in Mean Curvature Flow and Minimal Surface Theory
平均曲率流和极小曲面理论中的问题
  • 批准号:
    1609340
  • 财政年份:
    2016
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了