Application of Random Matrix Theory to Structured High-dimensional Data

随机矩阵理论在结构化高维数据中的应用

基本信息

  • 批准号:
    1106690
  • 负责人:
  • 金额:
    $ 17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The main goal of this application is to utilize spectral analysis techniques for dealing with high-dimensional inferential problems. Techniques of random matrix theory, especially Stieltjes transforms of spectral measures, will be utilized to enhance understanding the effects of dependencies among observations on commonly used statistical procedures in high-dimensional settings. As a key component, investigations on the spectral characteristics of large random matrices with dependencies among both rows and columns will be carried out. In addition, new regularization schemes will be developed that are tuned to the characteristics of the data, including possible non-stationarity of the observations, and make use of the intrinsic parsimonious structures in the data.The proposed application is motivated by problems in a wide range of scientific fields such as wireless communication, spectrometry, genomics, environmental modeling, atmospheric science, brain imaging and econometrics. The emphasis of this proposal is to develop theoretical understanding and practical tools for analyzing complex and large-scale data arising in these disciplines. The research outputs from this project are expected to give wider access among scientists and practitioners in various disciplines to modern statistical tools and concepts for dealing with high-dimensional data. In addition, the tools and ideas developed through this project are likely to contribute towards downstream technologies that require sophisticated real-time data analysis techniques for complex time-varying signals.
这个应用程序的主要目标是利用频谱分析技术来处理高维推理问题。随机矩阵理论的技术,特别是谱测量的Stieltjes变换,将用于增强对高维环境中常用统计程序的观察之间的依赖性的影响的理解。作为一个关键组成部分,大型随机矩阵之间的行和列的依赖性的频谱特性的调查将进行。此外,新的正则化方案将被开发,调整到数据的特性,包括可能的非平稳性的观察,并利用内在的简约结构的data.The拟议的应用程序是由在广泛的科学领域,如无线通信,光谱,基因组学,环境建模,大气科学,脑成像和计量经济学的问题。该提案的重点是发展理论理解和实用工具,以分析这些学科中出现的复杂和大规模数据。预计该项目的研究成果将使各学科的科学家和从业人员更广泛地获得处理高维数据的现代统计工具和概念。此外,通过该项目开发的工具和想法可能有助于下游技术,这些技术需要复杂的时变信号的复杂实时数据分析技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debashis Paul其他文献

Limiting spectral distribution of renormalized separable sample covariance matrices when p/n →0
Resistance development in pink bollworm (Pectinophora Gossypiella Saunders) against Bt cotton and its’ establishment as mid season pest in India
印度粉红铃虫(Pectinophora Gossypiella Saunders)对 Bt 棉花产生抗药性及其成为季中害虫的情况
  • DOI:
    10.1038/s41598-025-89575-z
  • 发表时间:
    2025-02-27
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Rishi Kumar;B. V. Bhede;Debashis Paul;N. K. Bhute;Prashant Patil;R. D. Patel;M. V. Variya;S. G. Hanchinal;Poornima V. Matti;Shivaray Navi;Anil Jakhar;Jasjinder Kaur;Roop Singh Meena;Jyoti Rekha Mallick;Satnam Singh;N. Chitra;G Annie Diana Grace;R. K. Kalyan;M. Sivarama Krishna;G. T. Bahere;A. H. Prakash;Y. G. Prasad
  • 通讯作者:
    Y. G. Prasad
Genotype and harvesting time influence development of hard seeds and its physico-chemical constituents in green gram (Vigna radiata (L.) Wilczek)
  • DOI:
    10.1007/s40502-024-00848-7
  • 发表时间:
    2024-12-19
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Debashis Paul;S. K. Chakrabarty;Lata Nain;Aniruddha Maity
  • 通讯作者:
    Aniruddha Maity
Understanding heat-shock proteins’ abundance and pivotal function under multiple abiotic stresses
  • DOI:
    10.1007/s13562-024-00932-x
  • 发表时间:
    2024-11-07
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Prabhat Kumar;Debashis Paul;Sunita Jhajhriya;Rishi Kumar;Suman Dutta;Priyanka Siwach;Sumanta Das
  • 通讯作者:
    Sumanta Das
Quantitative Analysis on Expression of Insecticidal Crystal Proteins in Different Plant Parts of BG-II Cotton Hybrids at Various Phenological Stages
  • DOI:
    10.1007/s40003-024-00763-1
  • 发表时间:
    2024-07-09
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Debashis Paul;Rishi Kumar;G. Balasubhramani;Sandeep Bagri;Subhash Chandra;S. Manickam;Satpal Singh;A. H. Prakash;Y. G. Prasad
  • 通讯作者:
    Y. G. Prasad

Debashis Paul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debashis Paul', 18)}}的其他基金

Collaborative Research: Multi-Scale Modeling of Non-Gaussian Random Fields
合作研究:非高斯随机场的多尺度建模
  • 批准号:
    1811405
  • 财政年份:
    2018
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Random Matrix Approach to High-Dimensional Time Series
高维时间序列的随机矩阵方法
  • 批准号:
    1407530
  • 财政年份:
    2014
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant

相似海外基金

Universal approaches in random matrix theory
随机矩阵理论中的通用方法
  • 批准号:
    24K06766
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
  • 批准号:
    23K20800
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
  • 批准号:
    2316836
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
CAREER: Non-Asymptotic Random Matrix Theory and Connections
职业:非渐近随机矩阵理论和联系
  • 批准号:
    2237646
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Non-invasive neurosurgical planning with Random Matrix Theory MRI
利用随机矩阵理论 MRI 进行无创神经外科规划
  • 批准号:
    10541655
  • 财政年份:
    2022
  • 资助金额:
    $ 17万
  • 项目类别:
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
  • 财政年份:
    2022
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Grants Program - Individual
Fluctuations of random matrix eigenvalues and disordered systems
随机矩阵特征值的涨落和无序系统
  • 批准号:
    RGPIN-2022-03118
  • 财政年份:
    2022
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic number theory and random matrix theory
解析数论和随机矩阵论
  • 批准号:
    RGPIN-2019-05037
  • 财政年份:
    2022
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Grants Program - Individual
Fifty Years of Number Theory and Random Matrix Theory
数论和随机矩阵论五十年
  • 批准号:
    2200884
  • 财政年份:
    2022
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了