Analytic number theory and random matrix theory

解析数论和随机矩阵论

基本信息

  • 批准号:
    RGPIN-2019-05037
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

My research will focus on L-functions which connect with many number theoretic objects. I am interested in exploring the moments in several families of L-functions at a very detailed level. The moments are key to understanding the value distribution of L-functions, and reveal glimpses of a rich tapestry that underlies all of number theory. The interconnectedness of seemingly disparate number theoretic objects becomes apparent when looking at them from a statistical point of view. I will also study identities and algorithms for L-functions, and connections with random matrix statistics. Florea has studied moments at the critical point of L-functions over function fields associated to hyperelliptic curves. For the first moment, she found an extra term of size cube root the main term. I will investigate whether a similar term exists in the number field setting, in the family of quadratic Dirichlet L-functions. A related problem concerns the 10-th and higher moments of the L-functions associated to elliptic curves over finite fields. Here the traces of all the Hecke operators for the full modular group. Do the Hecke operators enter into the higher moments in the case of quadratic Dirichlet L-functions over number fields? The theory of multiple Dirichlet series produces the sharpest known remainder terms for the moments in cases where the method yields proofs. An interesting feature of the multiple Dirichlet series approach is that it predicts extra lower terms in the moments, starting with the cubic moment of quadratic Dirichlet L-functions, and with the second moment for quadratic twists of an elliptic curve L-function. With my grad student Kumar, we plan to examine the second moment of quadratic twists of an elliptic curve L-functions for such terms. With colleagues, I have studied the moment of the logarithmic derivative of characteristic polynomials of unitary matrices and its connection to the same statistic for the Riemann zeta function. We have uncovered remarkable identities whose combinatorics we would like to better understand. With Peter Sarnak, we have been studying the potential and the limitations in the Weil explicit formula for computing the zeros of L-functions. We model the problem in a random matrix theory setting and ask related questions. Given the first k moments of the eigenvalues of a matrix A, what can be determined about the location of the eigenvalues of the matrix? We believe, by exploiting the highly non-convex geometry inherent in our problem, that we can improve the complexity of certain algorithms in number theory and we plan to investigate this both in the random matrix setting and in the L-function setting. My research will contribute to the field of number theory, providing fundamental and important advances in knowledge, and also resulting in training of highly qualified personnel.
My research will focus on L-functions which connect with many number theoretic objects. I am interested in exploring the moments in several families of L-functions at a very detailed level. The moments are key to understanding the value distribution of L-functions, and reveal glimpses of a rich tapestry that underlies all of number theory. The interconnectedness of seemingly disparate number theoretic objects becomes apparent when looking at them from a statistical point of view. I will also study identities and algorithms for L-functions, and connections with random matrix statistics. Florea has studied moments at the critical point of L-functions over function fields associated to hyperelliptic curves. For the first moment, she found an extra term of size cube root the main term. I will investigate whether a similar term exists in the number field setting, in the family of quadratic Dirichlet L-functions. A related problem concerns the 10-th and higher moments of the L-functions associated to elliptic curves over finite fields. Here the traces of all the Hecke operators for the full modular group. Do the Hecke operators enter into the higher moments in the case of quadratic Dirichlet L-functions over number fields? The theory of multiple Dirichlet series produces the sharpest known remainder terms for the moments in cases where the method yields proofs. An interesting feature of the multiple Dirichlet series approach is that it predicts extra lower terms in the moments, starting with the cubic moment of quadratic Dirichlet L-functions, and with the second moment for quadratic twists of an elliptic curve L-function. With my grad student Kumar, we plan to examine the second moment of quadratic twists of an elliptic curve L-functions for such terms. With colleagues, I have studied the moment of the logarithmic derivative of characteristic polynomials of unitary matrices and its connection to the same statistic for the Riemann zeta function. We have uncovered remarkable identities whose combinatorics we would like to better understand. With Peter Sarnak, we have been studying the potential and the limitations in the Weil explicit formula for computing the zeros of L-functions. We model the problem in a random matrix theory setting and ask related questions. Given the first k moments of the eigenvalues of a matrix A, what can be determined about the location of the eigenvalues of the matrix? We believe, by exploiting the highly non-convex geometry inherent in our problem, that we can improve the complexity of certain algorithms in number theory and we plan to investigate this both in the random matrix setting and in the L-function setting. My research will contribute to the field of number theory, providing fundamental and important advances in knowledge, and also resulting in training of highly qualified personnel.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rubinstein, Michael其他文献

Phase-Based Video Motion Processing
  • DOI:
    10.1145/2461912.2461966
  • 发表时间:
    2013-07-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Wadhwa, Neal;Rubinstein, Michael;Freeman, William T.
  • 通讯作者:
    Freeman, William T.
Nanorheology of Entangled Polymer Melts
  • DOI:
    10.1103/physrevlett.120.057801
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ge, Ting;Grest, Gary S.;Rubinstein, Michael
  • 通讯作者:
    Rubinstein, Michael
Surface-Anchored Poly(N-isopropylacrylamide) Orthogonal Gradient Networks.
  • DOI:
    10.1021/acs.macromol.6b01048
  • 发表时间:
    2016-07-26
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Pandiyarajan, C. K.;Rubinstein, Michael;Genzer, Jan
  • 通讯作者:
    Genzer, Jan
Diffusion of Thin Nanorods in Polymer Melts.
  • DOI:
    10.1021/acs.macromol.1c00989
  • 发表时间:
    2021-08-10
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Wang, Jiuling;O'Connor, Thomas C.;Grest, Gary S.;Zheng, Yitong;Rubinstein, Michael;Ge, Ting
  • 通讯作者:
    Ge, Ting
Hopping Diffusion of Nanoparticles in Polymer Matrices.
  • DOI:
    10.1021/ma501608x
  • 发表时间:
    2015-02-10
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Cai, Li-Heng;Panyukov, Sergey;Rubinstein, Michael
  • 通讯作者:
    Rubinstein, Michael

Rubinstein, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rubinstein, Michael', 18)}}的其他基金

Analytic number theory and random matrix theory
解析数论和随机矩阵论
  • 批准号:
    RGPIN-2019-05037
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic number theory and random matrix theory
解析数论和随机矩阵论
  • 批准号:
    RGPIN-2019-05037
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic number theory and random matrix theory
解析数论和随机矩阵论
  • 批准号:
    RGPIN-2019-05037
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit methods in number theory
数论中的显式方法
  • 批准号:
    RGPIN-2014-05742
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit methods in number theory
数论中的显式方法
  • 批准号:
    RGPIN-2014-05742
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit methods in number theory
数论中的显式方法
  • 批准号:
    RGPIN-2014-05742
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit methods in number theory
数论中的显式方法
  • 批准号:
    RGPIN-2014-05742
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit methods in number theory
数论中的显式方法
  • 批准号:
    RGPIN-2014-05742
  • 财政年份:
    2014
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
L-functions and automorphic forms
L-函数和自守形式
  • 批准号:
    288303-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
L-functions and automorphic forms
L-函数和自守形式
  • 批准号:
    288303-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

关于群上的短零和序列及其cross number的研究
  • 批准号:
    11501561
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
堆垒基与Narkiewicz常数的研究
  • 批准号:
    11226279
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
FcγR基因拷贝数和狼疮性肾炎相关研究
  • 批准号:
    30801022
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
图的一般染色数与博弈染色数
  • 批准号:
    10771035
  • 批准年份:
    2007
  • 资助金额:
    18.0 万元
  • 项目类别:
    面上项目

相似海外基金

Analytic Number Theory at the Interface
界面上的解析数论
  • 批准号:
    2401106
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
  • 批准号:
    DP240100186
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Projects
RII Track-4:NSF: From Analytic Number Theory to Harmonic Analysis
RII Track-4:NSF:从解析数论到调和分析
  • 批准号:
    2229278
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
CAREER: Research in and Pathways to Analytic Number Theory
职业:解析数论的研究和途径
  • 批准号:
    2239681
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
Research on p-adic analytic cohomology of algebraic varieties and application to number theory
代数簇的p-adic解析上同调研究及其在数论中的应用
  • 批准号:
    22K13899
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
  • 批准号:
    RGPIN-2019-04888
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics and Analytic Number Theory
算术统计与解析数论
  • 批准号:
    RGPIN-2017-06589
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
On the Liouville function in short intervals and further topics in analytic number theory
短区间内的刘维尔函数以及解析数论中的进一步主题
  • 批准号:
    567986-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Postdoctoral Fellowships
Developing an alternative approach to analytic number theory
开发解析数论的替代方法
  • 批准号:
    RGPIN-2018-04174
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Analytic Number Theory and Additive Combinatorics
解析数论和加法组合学主题
  • 批准号:
    2200565
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了