Collaborative Research: Models and Methods for Nonstationary Behavioral Time Series

合作研究:非平稳行为时间序列的模型和方法

基本信息

  • 批准号:
    1060937
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2012-03-31
  • 项目状态:
    已结题

项目摘要

The study of behavioral and physiological data often is difficult because such data typically consist of large-dimensional, high-resolution nonstationary time series. Consequently, there is an increasing need for statistically principled and computationally efficient approaches for complex time series data. This research project focuses on the development of a coherent suite of novel statistical models and related methodology for large-dimensional, high-resolution multivariate time series. The statistical methods to be developed will be used to link nonstationary features of physiological time series, such as functional magnetic resonance image (fMRI), to behavioral and neurocognitive assessment data. The project will develop two types of approaches for modeling multi-dimensional time series. The first approach will model the set of nonstationary time series via the locally stationary representation that characterizes the spectral dynamics of the process in terms of a time-varying spectral density matrix. The second approach consists of capturing dynamical dependencies in the data via Bayesian state-space models that will be able to estimate the coherency across the time series over time.The statistical models and methods developed in this research project will be used to study how physiological time series in healthy individuals are related to neurocognitive scores. Data that will be studied include measures derived from brain images as well as time series of various regions of interest derived from fMRI. Behavioral and physiological signals recorded to monitor cognitive fatigue and workload also will be studied. Even though the focus of this project is on the analysis of physiological and behavioral data, the models and methods that will be developed in this research project are very general and have the potential of impacting other scientific fields given that highly structured multivariate time series data often are collected in the areas of econometrics, environmetrics, geosciences, and signal processing.
对行为和生理数据的研究通常很困难,因为此类数据通常由大维,高分辨率的非组织时间序列组成。 因此,对于复杂的时间序列数据,对统计原则和计算有效的方法的需求越来越大。 该研究项目的重点是开发一系列新型统计模型和相关方法,用于大约高分辨率的多元时间序列。 要开发的统计方法将用于将生理时间序列的非平稳特征(例如功能磁共振图像(fMRI))与行为和神经认知评估数据联系起来。 该项目将开发两种用于建模多维时间序列的方法。 第一种方法将通过局部固定的表示形式对非组织时间序列进行建模,该表示以随时间变化的光谱密度矩阵来表征该过程的光谱动力学。 第二种方法包括通过贝叶斯州空间模型捕获数据中的动态依赖性,这些模型将能够估算随时间序列的整个时间序列的相干性。该研究项目中开发的统计模型和方法将用于研究健康个体中的生理时间序列如何与神经认知分数相关。 将研究的数据包括源自大脑图像的措施以及来自fMRI的各个兴趣区域的时间序列。 还将研究记录以监测认知疲劳和工作量的行为和生理信号。 尽管该项目的重点是分析生理和行为数据,但该研究项目中将开发的模型和方法非常笼统,并且具有影响其他科学领域的潜力,因为高度结构化的多元时间序列数据通常是在计量经济学,环境,环境,地球科学和信号处理的领域中收集的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hernando Ombao其他文献

Hernando Ombao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hernando Ombao', 18)}}的其他基金

Developing Novel Statistical Methods in NeuroImaging
开发神经影像领域的新型统计方法
  • 批准号:
    1231069
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Applied Probability and Time Series Modeling
合作研究:应用概率和时间序列建模
  • 批准号:
    1238351
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Models and Methods for Nonstationary Behavioral Time Series
合作研究:非平稳行为时间序列的模型和方法
  • 批准号:
    1227745
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Applied Probability and Time Series Modeling
合作研究:应用概率和时间序列建模
  • 批准号:
    1106814
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Spectral and Connectivity Analysis of Non-Stationary Spatio-Temporal Data
合作研究:非平稳时空数据的谱和连通性分析
  • 批准号:
    0806106
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Localized Cross Spectral Analysis and Pattern Recognition Methods for Non-Stationary Signals
非平稳信号的局部互谱分析和模式识别方法
  • 批准号:
    0813827
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: The Analysis of Time Series Collected in Experimental Designs
协作研究:实验设计中收集的时间序列分析
  • 批准号:
    0753787
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: The Analysis of Time Series Collected in Experimental Designs
协作研究:实验设计中收集的时间序列分析
  • 批准号:
    0706709
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Localized Cross Spectral Analysis and Pattern Recognition Methods for Non-Stationary Signals
非平稳信号的局部互谱分析和模式识别方法
  • 批准号:
    0405243
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
  • 批准号:
    52371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
  • 批准号:
    82370525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
  • 批准号:
    62371132
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
  • 批准号:
    42301138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
  • 批准号:
    52302289
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346565
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了