Causal Inference from Two-level Factorial Designs

两级因子设计的因果推断

基本信息

  • 批准号:
    1107004
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-10-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

The investigators develop a framework for causal inference from two-level factorial and fractional factorial designs with particular sensitivity to applications to social, behavioral and biomedical sciences. The framework utilizes the concept of potential outcomes that lies at the center stage of causal inference and extends Neyman's repeated sampling approach for estimation of causal effects and randomization tests based on Fisher's sharp null hypothesis to the case of 2-level factorial experiments. The framework allows for statistical inference from a finite population, permits definition and estimation of parameters other than ``average factorial effects'' and leads to more flexible inference procedures than those based on ordinary least squares estimation from a linear model. It also ensures validity of statistical inference when the investigation becomes an observational study in lieu of a randomized factorial experiment due to randomization restrictions.Factorial designs allow efficient and cost-effective assessments of the relative effects of several factors and their interactions on output variables of interest. Such designs have been successfully applied in several scientific, engineering and industrial endeavors, but not often used in the social, behavioral or biomedical sciences in spite of several potential applications in these fields. The proposed methodology addresses the complications associated with multi-factor experiments in the aforesaid fields and has a wide range of applications. It can be applied, for example, to assess the impact of several new initiatives on high-school education; or to conduct cost-effective clinical trials to study individual and combined effects of different treatments offered to patients suffering from a certain disease; or to identify critical factors that affect yield of complex physical processes in material science like synthesis of nanostructures. It can also be applied to comparative effectiveness research (e.g., in evidence-based medicine).
研究人员开发了一个框架,从两个层次的析因和部分析因设计的因果推理,特别敏感的应用到社会,行为和生物医学科学。该框架利用的概念,潜在的结果,在于在中心阶段的因果推理和扩展奈曼的重复抽样方法的因果效应和随机化测试的基础上,费舍尔的尖锐零假设的情况下,2水平析因实验的估计。该框架允许从一个有限的人口统计推断,允许定义和估计参数以外的“平均因子效应”,并导致更灵活的推理程序比那些基于普通的最小二乘估计从线性模型。当调查由于随机化限制而成为观察性研究而不是随机析因实验时,它也确保了统计推断的有效性。析因设计允许有效和成本效益地评估几个因素的相对影响及其对感兴趣的输出变量的相互作用。这样的设计已经成功地应用于几个科学,工程和工业的努力,但不经常使用在社会,行为或生物医学科学,尽管在这些领域的几个潜在的应用。所提出的方法解决了上述领域中与多因素实验相关的复杂性,具有广泛的应用。例如,它可以应用于评估几项新举措对高中教育的影响;或进行具有成本效益的临床试验,以研究为患有某种疾病的患者提供的不同治疗的单独和综合效果;或确定影响材料科学中复杂物理过程产量的关键因素,如纳米结构的合成。它也可以应用于比较有效性研究(例如,循证医学)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tirthankar Dasgupta其他文献

Leveraging Web Based Evidence Gathering for Drug Information Identification from Tweets
利用基于网络的证据收集从推文中识别药物信息
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rupsa Saha;Abir Naskar;Tirthankar Dasgupta;Lipika Dey
  • 通讯作者:
    Lipika Dey
Integrating the improvement and the control phase of Six Sigma for categorical responses through application of Mahalanobis-Taguchi System (MTS)
Shape Deviation Modeling for Dimensional Quality Control in Additive Manufacturing
用于增材制造中尺寸质量控制的形状偏差建模
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lijuan Xu;Qiang Huang;Arman Sabbaghi;Tirthankar Dasgupta
  • 通讯作者:
    Tirthankar Dasgupta
Determining Subjective Bias in Text through Linguistically Informed Transformer based Multi-Task Network
通过基于语言信息变压器的多任务网络确定文本中的主观偏见
A Potential Tale of Two-by-Two Tables From Completely Randomized Experiments
完全随机实验中的二乘二表的潜在故事

Tirthankar Dasgupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tirthankar Dasgupta', 18)}}的其他基金

EAGER: Collaborative Research: MATDAT18 Type-I: Development of a machine learning framework to optimize ReaxFF force field parameters
EAGER:协作研究:MATDAT18 Type-I:开发机器学习框架以优化 ReaxFF 力场参数
  • 批准号:
    1842952
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Design and Analysis of Optimization Experiments with Internal Noise to Maximize Alignment of Carbon Nanotubes
内部噪声优化实验的设计与分析以最大化碳纳米管的排列
  • 批准号:
    1745714
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Design and Analysis of Optimization Experiments with Internal Noise to Maximize Alignment of Carbon Nanotubes
内部噪声优化实验的设计与分析以最大化碳纳米管的排列
  • 批准号:
    1612901
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Geometric Shape Error Control for High-Precision Additive Manufacturing
合作研究:高精度增材制造的几何形状误差控制
  • 批准号:
    1334178
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanostructure Growth Process Modeling and Optimal Experimental Strategies for Repeatable Fabrication of Nanostructures for Application in Photovoltaics
合作研究:纳米结构生长过程建模和可重复制造光伏应用纳米结构的最佳实验策略
  • 批准号:
    1000720
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Causal Inference for Better Understanding Clinical Trials Results: Reconciling Discrepant Comparative Evidence from Two Major Cardiovascular Safety Trials of Urate-Lowering Therapy
更好地理解临床试验结果的因果推断:调和两个主要降尿酸治疗心血管安全性试验的差异比较证据
  • 批准号:
    10507247
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Causal Inference for Better Understanding Clinical Trials Results: Reconciling Discrepant Comparative Evidence from Two Major Cardiovascular Safety Trials of Urate-Lowering Therapy
更好地理解临床试验结果的因果推断:调和两个主要降尿酸治疗心血管安全性试验的差异比较证据
  • 批准号:
    10662563
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Real-time inference of three-dimensional anatomical shapes from two-dimensional ultrasound images using generative recurrent neural networks
使用生成循环神经网络从二维超声图像实时推断三维解剖形状
  • 批准号:
    542670-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Estimation and Inference of Regression Models in Which Two Data Sets Are Combined
组合两个数据集的回归模型的估计和推断
  • 批准号:
    19K01595
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applying a two-eyed seeing approach to causal inference using First Nations health and wellness surveys in British Columbia: integrated knowledge translation with the British Columbia First Nations Health Authority to improve understanding for health and
使用不列颠哥伦比亚省原住民健康和保健调查应用两只眼睛观察方法进行因果推理:与不列颠哥伦比亚省原住民卫生局进行综合知识翻译,以提高对健康和保健的理解
  • 批准号:
    370853
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Operating Grants
Estimation, model selection and inference in two classes of non- and semi-parametric models for repeated measurements
用于重复测量的两类非参数和半参数模型的估计、模型选择和推理
  • 批准号:
    1306972
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Two Problems in Statistical Inference
统计推断中的两个问题
  • 批准号:
    0906858
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Advances in density estimation time series, order statistics and predictive inference & preparation of two textbooks
密度估计时间序列、阶次统计和预测推理的进展
  • 批准号:
    8666-2003
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Advances in density estimation time series, order statistics and predictive inference & preparation of two textbooks
密度估计时间序列、阶次统计和预测推理的进展
  • 批准号:
    8666-2003
  • 财政年份:
    2006
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Advances in density estimation time series, order statistics and predictive inference & preparation of two textbooks
密度估计时间序列、阶次统计和预测推理的进展
  • 批准号:
    8666-2003
  • 财政年份:
    2005
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了