Design and Analysis of Optimization Experiments with Internal Noise to Maximize Alignment of Carbon Nanotubes

内部噪声优化实验的设计与分析以最大化碳纳米管的排列

基本信息

  • 批准号:
    1612901
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Over the past several decades, carbon nanotubes (CNT) have risen to the forefront of scientific research due to their unique electrical, mechanical and optical properties. However, transferring these properties from nanoscale materials to industrial-scale products often requires alignment (orientation in the same direction) of CNT. One of the important consequences of alignment is improved conductivity, a highly desirable property in electro-chemical water treatment and closely associated with research endeavors to improve quality of drinking water. Therefore, identification of scalable and cost-effective experimental conditions that maximize alignment of CNT is an important research problem. This is addressed in the project.The proposed research aims to establish statistical methodologies for designing and analyzing efficient experiments that determine conditions for maximizing alignment of CNT, when one or more input factors are prone to internal noise. The proposed research consists of three tasks, with particular focus on addressing the challenges arising from presence of factors with internal noise and complexity of the response surface. (i) Developing a Bayesian approach to response-surface optimization with noisy inputs. Such an approach allows the experimenter to combine data on output, controllable input, and uncontrollable input from different sources; is a natural way of incorporating expert knowledge into the analysis; and provides a natural framework for optimal design of experiments with noisy inputs. (ii) Efficient design of optimization experiments with noisy inputs. The research will focus on developing a comprehensive design strategy, which is a combination of model-free and Bayesian model-based optimal designs. The model-free design will address the challenges arising from internal noise and complex response surface. (iii) Demonstration and validation of the developed methodologies in the co-PI's lab. A series of experiments will be planned to apply the developed statistical methodology in an attempt to identify factors that trigger alignment of CNT and also to identify their optimum levels to maximize alignment. The proposed framework will allow an experimenter to effectively capture the transmission of uncertainty from input variables to output variables by combining data from different sources, and by utilizing a combination of model-free and model-based experimental designs for efficient exploration of complex response surfaces. From a material scientist's perspective, the proposed method will provide a much more accurate quantification of uncertainty, resulting in more reliable predictions about optimal process conditions as determined from laboratory experiments.
在过去的几十年里,碳纳米管(CNT)由于其独特的电学,机械和光学特性而成为科学研究的前沿。然而,将这些特性从纳米级材料转移到工业规模的产品通常需要CNT的对齐(在同一方向上的取向)。 排列的重要结果之一是改善导电性,这是电化学水处理中非常理想的性质,并且与改善饮用水质量的研究工作密切相关。因此,确定可扩展的和具有成本效益的实验条件,最大限度地对齐CNT是一个重要的研究问题。该研究旨在建立设计和分析有效实验的统计方法,当一个或多个输入因素容易产生内部噪声时,确定最大化CNT对齐的条件。拟议的研究包括三个任务,特别侧重于解决存在的内部噪声和复杂的响应面的因素所带来的挑战。(i)开发一种贝叶斯方法来优化有噪声输入的响应面。这种方法允许实验者结合联合收割机的输出数据,可控输入,不可控的输入从不同的来源,是一种自然的方式,将专家知识的分析,并提供了一个自然的框架,优化设计的实验与噪声输入。(ii)有噪声输入的优化实验的有效设计。该研究将侧重于开发一个综合的设计策略,这是一个无模型和贝叶斯模型为基础的优化设计相结合。无模型设计将解决内部噪声和复杂响应面带来的挑战。(iii)在共同主要研究者的实验室中演示和验证所开发的方法。一系列的实验将计划应用开发的统计方法,试图确定触发对齐的CNT的因素,并确定其最佳水平,以最大限度地对齐。建议的框架将允许实验者有效地捕捉从输入变量到输出变量的不确定性的传输,通过结合来自不同来源的数据,并通过利用无模型和基于模型的实验设计的组合,有效地探索复杂的响应面。从材料科学家的角度来看,所提出的方法将提供更准确的不确定性量化,从而对实验室实验确定的最佳工艺条件进行更可靠的预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tirthankar Dasgupta其他文献

Leveraging Web Based Evidence Gathering for Drug Information Identification from Tweets
利用基于网络的证据收集从推文中识别药物信息
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rupsa Saha;Abir Naskar;Tirthankar Dasgupta;Lipika Dey
  • 通讯作者:
    Lipika Dey
Integrating the improvement and the control phase of Six Sigma for categorical responses through application of Mahalanobis-Taguchi System (MTS)
Shape Deviation Modeling for Dimensional Quality Control in Additive Manufacturing
用于增材制造中尺寸质量控制的形状偏差建模
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lijuan Xu;Qiang Huang;Arman Sabbaghi;Tirthankar Dasgupta
  • 通讯作者:
    Tirthankar Dasgupta
Determining Subjective Bias in Text through Linguistically Informed Transformer based Multi-Task Network
通过基于语言信息变压器的多任务网络确定文本中的主观偏见
A Potential Tale of Two-by-Two Tables From Completely Randomized Experiments
完全随机实验中的二乘二表的潜在故事

Tirthankar Dasgupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tirthankar Dasgupta', 18)}}的其他基金

EAGER: Collaborative Research: MATDAT18 Type-I: Development of a machine learning framework to optimize ReaxFF force field parameters
EAGER:协作研究:MATDAT18 Type-I:开发机器学习框架以优化 ReaxFF 力场参数
  • 批准号:
    1842952
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Design and Analysis of Optimization Experiments with Internal Noise to Maximize Alignment of Carbon Nanotubes
内部噪声优化实验的设计与分析以最大化碳纳米管的排列
  • 批准号:
    1745714
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Geometric Shape Error Control for High-Precision Additive Manufacturing
合作研究:高精度增材制造的几何形状误差控制
  • 批准号:
    1334178
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Causal Inference from Two-level Factorial Designs
两级因子设计的因果推断
  • 批准号:
    1107004
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanostructure Growth Process Modeling and Optimal Experimental Strategies for Repeatable Fabrication of Nanostructures for Application in Photovoltaics
合作研究:纳米结构生长过程建模和可重复制造光伏应用纳米结构的最佳实验策略
  • 批准号:
    1000720
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Modeling, Optimization, and Equilibrium Formulations for the Analysis and Design of Circular Economy Networks
职业:循环经济网络分析和设计的建模、优化和平衡公式
  • 批准号:
    2339068
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Design and Analysis of Algorithms for Structured Optimization
结构化优化算法的设计与分析
  • 批准号:
    2307328
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Design, Analysis, and Optimization of Equitable and Value-based Baseline Testing Policies for Sports-Related Concussion
运动相关脑震荡公平且基于价值的基线测试政策的设计、分析和优化
  • 批准号:
    10649169
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Analysis of Dynamical Structure in the Chaotic Region and Application to Trajectory Design and Optimization
混沌区域动力结构分析及其在轨迹设计与优化中的应用
  • 批准号:
    23KJ1692
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Hierarchical Geometric Accelerated Optimization, Collision-based Constraint Satisfaction, and Sensitivity Analysis for VLSI Chip Design
VLSI 芯片设计的分层几何加速优化、基于碰撞的约束满足和灵敏度分析
  • 批准号:
    2307801
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Model-Based Analysis and Design Optimization of Music Instruments
基于模型的乐器分析与设计优化
  • 批准号:
    RGPIN-2020-04874
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Design, Analysis, and Optimization of Energy-Efficient and Secure Next-Generation Wireless Systems and Beyond.
节能且安全的下一代无线系统及其他系统的设计、分析和优化。
  • 批准号:
    RGPIN-2019-04626
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Evolutionary Multiobjective Optimization Algorithms and Benchmark Problem Design based on the Analysis of Real-world Problems
基于实际问题分析的进化多目标优化算法和基准问题设计的开发
  • 批准号:
    22H03664
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Digital multidisciplinary analysis and design optimization platform for aeroderivative gas turbines
航改燃气轮机数字化多学科分析与设计优化平台
  • 批准号:
    513922-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Collaborative Research and Development Grants
Design, Analysis, and Optimization of an End-to-End Cloud-Centric System for Internet of Things over HetNet
HetNet 上的物联网端到端以云为中心的系统的设计、分析和优化
  • 批准号:
    RGPIN-2017-04423
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了