Collaborative Research: Penalization Methods for Screening, Variable Selection and Dimension Reduction in High-dimensional Regression via Multiple Index Models
合作研究:通过多指标模型进行高维回归筛选、变量选择和降维的惩罚方法
基本信息
- 批准号:1107029
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-15 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to develop effective penalization methods for screening, dimension reduction, and variable selection in high dimensional regression. The investigators focus mainly on multiple index models, because this type of models combines the strengths of linear and nonparametric regression while avoiding their drawbacks. A novel penalization approach is employed for model fitting, which regularizes both the parametric and nonparametric components of a multiple index model. A pilot study shows that this approach is more advantageous than other existing ones. When facing ultra-high dimensionality, the investigators use a forward variable screening procedure to reduce the dimension to a manageable size before applying the proposed penalization. The investigators plan to study the theoretical properties of this approach and develop fast and efficient computing algorithms for its implementation. The proposed approach is further extended to applications involving categorical responses or random effects.Advances in science and technology have led to an explosive growth of massive data across a variety of areas such as bioinformatics, climate research, internet, etc. Traditional statistical methods for clustering, regression and classification become ineffective when dealing with a large number of variables. Lately, a tremendous amount of research effort has been dedicated to the development of statistical methods such as dimension reduction and variable selection for analyzing this type of massive data. The investigators join the effort by proposing a novel penalization approach and developing efficient computing algorithms. The results from this project not only advance statistical research but also help other scientists and researchers better understand and analyze their massive data and hence enhance their scientific discovery.
该项目旨在开发有效的惩罚方法,用于高维回归中的筛选,降维和变量选择。研究人员主要关注多指标模型,因为这种类型的模型结合了线性和非参数回归的优点,同时避免了它们的缺点。采用一种新的惩罚方法进行模型拟合,该方法对多指标模型的参数和非参数分量进行正则化。 一个试点研究表明,这种方法是更有利的比其他现有的。当面对超高维度时,研究人员使用前向变量筛选程序将维度减少到可管理的大小,然后再应用建议的惩罚。研究人员计划研究这种方法的理论特性,并为其实现开发快速有效的计算算法。随着科学技术的发展,生物信息学、气候研究、互联网等领域的海量数据呈爆炸式增长,传统的聚类、回归和分类等统计方法在处理大量变量时变得失效。最近,大量的研究工作一直致力于发展统计方法,如降维和变量选择,以分析这种类型的海量数据。研究人员通过提出一种新的惩罚方法和开发有效的计算算法来加入这项工作。该项目的成果不仅推动了统计研究,而且有助于其他科学家和研究人员更好地理解和分析他们的海量数据,从而提高他们的科学发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Zeng其他文献
LSTM Based EFAST Global Sensitivity Analysis for Interwell Connectivity Evaluation Using Injection and Production Fluctuation Data
基于 LSTM 的 EFAST 使用注入和生产波动数据进行井间连通性评估的全局敏感性分析
- DOI:
10.1109/access.2020.2985230 - 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
Haibo Cheng;Vyatkin Valeriy;Osipov Evgeny;Peng Zeng;Haibin Yu - 通讯作者:
Haibin Yu
Novel N-Mo2C Active Sites for Efficient Solar-to-Hydrogen Generation
用于高效太阳能制氢的新型 N-Mo2C 活性位点
- DOI:
10.1002/celc.201701365 - 发表时间:
2018 - 期刊:
- 影响因子:4
- 作者:
Abbas Syed Comail;Peng Zeng;Wu Jing;An;hababu Ganesan;Babu Dickson D.;Huang Yiyin;Ghausi Muhammad Arsalan;Wu Maoxiang;Wang Yaobing - 通讯作者:
Wang Yaobing
Asynchronous multi-channel neighbour discovery for energy optimisation in wireless sensor networks
无线传感器网络中用于能量优化的异步多通道邻居发现
- DOI:
10.1504/ijsnet.2014.065873 - 发表时间:
2014-11 - 期刊:
- 影响因子:1.1
- 作者:
Jinchao Xiao;Peng Zeng;Chuanzhi Zang;Haibin Yu;Yang Xiao - 通讯作者:
Yang Xiao
The mechanism of Astragalus membranaceus in treating peritoneal fibrosis by intervening the key syndrome and pathology based on Q-marker theory
基于Q-marker理论探讨黄芪干预关键证候治疗腹膜纤维化的机制
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xin Liu;Qian-Cheng Liu;Li Liang;Guang-Wen Chen;Li-Feng Meng;Peng Zeng - 通讯作者:
Peng Zeng
Fully Textured, Production‐Line Compatible Monolithic Perovskite/Silicon Tandem Solar Cells Approaching 29% Efficiency
全纹理、生产线兼容的单片钙钛矿/硅串联太阳能电池效率接近 29%
- DOI:
10.1002/adma.202206193 - 发表时间:
2022 - 期刊:
- 影响因子:29.4
- 作者:
Lin Mao;Tian Yang;Hao Zhang;Jianhua Shi;Yu;Peng Zeng;Faming Li;Jue Gong;Xiaoyu Fang;Yinqing Sun;Xiaochun Liu;Junlin Du;Anjun Han;Liping Zhang;Wenzhu Liu;Fanying Meng;X. Cui;Zhengxin Liu;Mingzhen Liu - 通讯作者:
Mingzhen Liu
Peng Zeng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Zeng', 18)}}的其他基金
Collaborative Research: Integral Transform Methods for Sufficient Dimension Reduction in Regression
合作研究:回归中充分降维的积分变换方法
- 批准号:
0706880 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Training Grant














{{item.name}}会员




