Semi-stochastic Diagonalization Approach to Quantum Chemistry
量子化学的半随机对角化方法
基本信息
- 批准号:1112097
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cyrus Umrigar of Cornell University is supported by an award from the Chemical Theory, Models and Computational Methods Program in extending a high-level algorithm for electronic structure including configuration interaction. Strongly correlated systems, for example, molecules with stretched bonds, pose a particularly severe challenge for high-level quantum chemistry methods, and this is an area where the new method may have considerable impact. The Alavi group has already performed full configuration interaction (FCI) calculations in a space of 10^16 (ten to the sixteenth) determinants, well beyond the 10^10 determinants feasible with traditional iterative diagonalization techniques. The diffculty posed by a problem depends not only on the size of the space but also upon distribution of wave function weights and the severity of the sign problem. The work centers around improvements to enhance the range of applicability of the method. A hybrid deterministic-cum-stochastic approach is being developed that preserves the desirable features of both approaches (reduced statistical error from having a deterministic component as well as the ability to explore very large spaces made possible by a stochastic approach). Preliminary work has demonstrated that improved trial wavefunctions can yield a large reduction in the statistical errors of the computed expectation values. Since the walk is done in determinant space, the Fermion sign problem, which is severe in competing methods due to the exponential growth of the Bosonic wavefunction relative to the Fermionic wavefunction, is absent in the present method. The method does have a less severe form of the sign problem and practical ways are demonstrated for keeping that under control. A procedure for improving the convergence with respect to basis size is also being developed. These improvements are to make possible highly accurate calculations on molecular systems that were hitherto not feasible with existing quantum chemistry methods, such as the dissociation curves for transition metal dimers. The general mathematical problem being addressed extends well beyond the realm of quantum chemistry, namely that of finding the dominant eigenvalue of a matrix that is so large that even a single column of the matrix cannot be stored in computer memory.Although the basic equation of quantum mechanics, the Schroedinger equation, has been known for almost a century, efficient methods for finding accurate solutions to this equation continue to be an active area of research. Such methods are essential for making useful predictions about a variety of properties of molecules and materials of technological interest. It is the purpose of this work to improve upon a method recently developed by the Alavi group at Cambridge University that uses probabilistic techniques to effectively employ orders of magnitude more basis functions (to get less error) than was hitherto possible.
康奈尔大学的Cyrus Umrigar获得了化学理论,模型和计算方法计划的奖项,以扩展电子结构的高级算法,包括配置相互作用。 强相关系统,例如,具有拉伸键的分子,对高级量子化学方法提出了特别严峻的挑战,这是新方法可能产生相当大影响的领域。阿拉维小组已经在10^16(10的16次方)行列式空间中进行了全组态相互作用(FCI)计算,远远超出了传统迭代对角化技术可行的10^10行列式。问题的难度不仅取决于空间的大小,还取决于波函数权的分布和符号问题的严重性。工作围绕改进,以提高该方法的适用范围。目前正在开发一种确定性与随机性相结合的混合方法,该方法保留了两种方法的理想特征(减少了确定性成分造成的统计误差,以及通过随机方法探索非常大的空间的能力)。初步的工作表明,改进的试探波函数可以产生一个很大的减少计算的期望值的统计误差。由于行走是在行列式空间中进行的,费米子符号问题,这是严重的竞争方法,由于玻色子波函数相对于费米子波函数的指数增长,在本方法中是不存在的。该方法确实有一个不太严重的形式的标志问题和实际的方法进行了演示,以保持控制。一个程序,以改善收敛方面的基础规模也正在制定中。这些改进使得迄今为止用现有量子化学方法不可行的分子系统的高精度计算成为可能,例如过渡金属二聚体的解离曲线。所要解决的一般数学问题远远超出了量子化学的范畴,即找到一个矩阵的主本征值,这个矩阵太大了,以至于连矩阵的一列都无法存储在计算机内存中。尽管量子力学的基本方程薛定谔方程已经被知道了将近世纪,寻找该方程的精确解的有效方法仍然是一个活跃的研究领域。这些方法对于对技术感兴趣的分子和材料的各种性质进行有用的预测至关重要。这项工作的目的是改进最近由剑桥大学的Alavi小组开发的方法,该方法使用概率技术来有效地使用比迄今为止可能的多几个数量级的基函数(以获得更少的误差)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cyrus Umrigar其他文献
Cyrus Umrigar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cyrus Umrigar', 18)}}的其他基金
SI2-SSE: Quantum Monte Carlo Software for a Broad Electronic Structure Research Community via Minimal Explicit Dependency (MED) programming
SI2-SSE:通过最小显式依赖 (MED) 编程为广泛的电子结构研究社区提供量子蒙特卡罗软件
- 批准号:
1534965 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Materials World Network: Solving Longstanding Problems of Density-Functional Theory with Quantum Monte Carlo
材料世界网络:用量子蒙特卡罗解决密度泛函理论的长期问题
- 批准号:
0908653 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: CMG: Quantum Monte Carlo Calculations of Deep Earth Materials
合作研究:CMG:地球深部材料的量子蒙特卡罗计算
- 批准号:
0530813 - 财政年份:2005
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
基于随机网络演算的无线机会调度算法研究
- 批准号:60702009
- 批准年份:2007
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于随机模型检测的网络脆弱性分析研究
- 批准号:60573144
- 批准年份:2005
- 资助金额:5.0 万元
- 项目类别:面上项目
二阶段随机优化的并行方法
- 批准号:10161002
- 批准年份:2001
- 资助金额:4.5 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
- 批准号:
10749856 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
- 批准号:
EP/Y033248/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
- 批准号:
EP/X041239/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant