Hydrogen molecules in nanoscale confinement: A combined eigenstate-resolved/path integral study of the quantum translation-rotation dynamics, spectroscopy, and diffusion

纳米级限制中的氢分子:量子平移-旋转动力学、光谱学和扩散的本征态解析/路径积分组合研究

基本信息

  • 批准号:
    1112292
  • 负责人:
  • 金额:
    $ 54.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

Zlatko Bacic (PI) and Mark E. Tuckerman (co-PI) of New York University are supported by an award from the Chemical Structures, Dynamics and Mechanisms program of the Chemistry Division for a computational study aimed at achieving a fundamental understanding and a comprehensive theoretical description of the quantum dynamics, spectroscopy, and diffusion of hydrogen molecules inside the nanoscale cavities of diverse host materials, such as clathrate hydrates, fullerenes and carbon nanotubes, and metal-organic frameworks (MOFs). This will provide a broad theoretical framework, as well as quantitative predictions, indispensable for the planning, analysis, and interpretation of various types of spectroscopic measurements of these systems presently carried out by groups around the world. An array of robust theoretical approaches, ranging from high-dimensional quantum bound state and scattering methods to diffusion Monte Carlo and path integral simulations, will be brought to bear on these objectives. Another goal of this proposal is the accurate determination of multidimensional, anisotropic and anharmonic interaction potentials of the nanoconfined hydrogen, and in certain cases H2O, with the host materials. Accomplishing this will involve the combination of sophisticated quantum dynamics and ab initio electronic structure calculations. The eigenstate-resolved calculations will be complemented by path integral simulations directed at elucidating the temperature and concentration dependence of the energetics, free-energetics, spatial distributions, and diffusion of molecular hydrogen, especially in bulk clathrate hydrates and MOFs. A major hurdle for the large-scale use of hydrogen as a clean and efficient energy carrier is developing ways to store it safely and economically. One possibility currently under intense investigation worldwide absorption in nanoporous materials. Quantitative understanding of the properties of molecular hydrogen under such conditions, and characterization of the interactions of hydrogen with various host environments is essential in joint experimental and theoretical efforts aimed at rational design of new media for hydrogen storage. If met, the challenge of developing efficient hydrogen-storage materials will have an enormous impact on emerging energy technologies. This research will be carried out by graduate and undergraduate students at NYU, including those from traditionally underrepresented groups. In addition, one of our experimental collaborators, Prof. Stephen FitzGerald, is at an undergraduate institution (Oberlin), and his students will be directly involved in the project.
Zlatko Bacic(PI)和Mark E.纽约大学的塔克曼(共同PI)获得了化学系化学结构,动力学和机制计划的奖项,用于计算研究,旨在实现对不同主体材料(如笼形水合物,富勒烯和碳纳米管)纳米级空腔内氢分子的量子动力学,光谱学和扩散的基本理解和全面的理论描述,和金属有机框架(MOFs)。这将提供一个广泛的理论框架,以及定量预测,不可或缺的规划,分析和解释这些系统的各种类型的光谱测量目前正在进行的团体在世界各地。一系列强有力的理论方法,从高维量子束缚态和散射方法扩散蒙特卡罗和路径积分模拟,将承担这些目标。该提案的另一个目标是准确测定纳米限制氢和在某些情况下H2O与主体材料的多维、各向异性和非谐相互作用势。实现这一目标将涉及复杂的量子动力学和从头计算电子结构计算的结合。本征态分辨计算将补充路径积分模拟,旨在阐明温度和浓度依赖的能量,自由能,空间分布和扩散的分子氢,特别是在散装笼形水合物和MOFs。大规模使用氢作为一种清洁高效的能源载体的一个主要障碍是开发安全经济的储存方法。一种可能性,目前正在激烈的调查,世界范围内的纳米多孔材料的吸收。定量的了解在这种条件下的分子氢的性质,和表征的氢与各种主机环境的相互作用是必不可少的联合实验和理论的努力,旨在合理设计的新媒体储氢。如果能够实现,开发高效储氢材料的挑战将对新兴能源技术产生巨大影响。这项研究将由纽约大学的研究生和本科生进行,包括那些传统上代表性不足的群体。此外,我们的实验合作者之一,斯蒂芬·菲茨杰拉德教授,是在一个本科院校(奥伯林),他的学生将直接参与该项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zlatko Bacic其他文献

Zlatko Bacic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zlatko Bacic', 18)}}的其他基金

Collaborative Research: Noncovalently Bound Molecular Trimers: High-dimensional and Fully Coupled Quantum Calculations of their Vibrational Levels
合作研究:非共价键合分子三聚体:其振动水平的高维和完全耦合量子计算
  • 批准号:
    2054616
  • 财政年份:
    2021
  • 资助金额:
    $ 54.5万
  • 项目类别:
    Standard Grant
The quantum mechanics of small molecules nanoconfined in complex chemical environments
复杂化学环境中纳米限制小分子的量子力学
  • 批准号:
    1566085
  • 财政年份:
    2016
  • 资助金额:
    $ 54.5万
  • 项目类别:
    Continuing Grant
Vibrational predissociation and vibration-tunneling dynamics of free and helium-microsolvated hydrogen-bonded complexes: going beyond diatom-diatom systems
自由和氦微溶剂化氢键配合物的振动预解离和振动隧道动力学:超越硅藻-硅藻系统
  • 批准号:
    0315508
  • 财政年份:
    2003
  • 资助金额:
    $ 54.5万
  • 项目类别:
    Continuing Grant
Quantum Dynamics of Coupled Large Amplitude Intermolecular Motions in Hydrogen-Bonded and Rare-Gas Heteroclusters
氢键和稀有气体异簇中耦合大振幅分子间运动的量子动力学
  • 批准号:
    9613641
  • 财政年份:
    1997
  • 资助金额:
    $ 54.5万
  • 项目类别:
    Continuing Grant
Accurate Quantum Dynamics of Rare-Gas Heteroclusters and Hydrogen-Bonded Dimers
稀有气体异簇和氢键二聚体的精确量子动力学
  • 批准号:
    9312312
  • 财政年份:
    1994
  • 资助金额:
    $ 54.5万
  • 项目类别:
    Continuing Grant
Quantum Spectroscopy and Dynamics of Molecules with Highly Excited Large Amplitude Vibrations
高激发大振幅振动的量子光谱和分子动力学
  • 批准号:
    9006672
  • 财政年份:
    1990
  • 资助金额:
    $ 54.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

足细胞中补体系统活化以及在足细胞损伤中作用机制研究
  • 批准号:
    81170657
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
双原子分子高激发振转能级的精确研究
  • 批准号:
    10774105
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
TB方法在有机和生物大分子体系计算研究中的应用
  • 批准号:
    20773047
  • 批准年份:
    2007
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

mRNA-LNPs for ARDS
ARDS 的 mRNA-LNP
  • 批准号:
    10659792
  • 财政年份:
    2023
  • 资助金额:
    $ 54.5万
  • 项目类别:
Elucidating the dynamic role of PTPsigma in synaptic nano-organization and NMDA receptor function
阐明 PTPsigma 在突触纳米组织和 NMDA 受体功能中的动态作用
  • 批准号:
    10606077
  • 财政年份:
    2023
  • 资助金额:
    $ 54.5万
  • 项目类别:
Retina-derived extracellular vesicles in diabetic retinopathy: their potential role in pathogenesis and therapy
糖尿病视网膜病变中视网膜来源的细胞外囊泡:它们在发病机制和治疗中的潜在作用
  • 批准号:
    10644819
  • 财政年份:
    2023
  • 资助金额:
    $ 54.5万
  • 项目类别:
Control of subsynaptic domain organization and nanocolumn alignment by neurexin-3
neurexin-3 控制突触亚域组织和纳米柱排列
  • 批准号:
    10429177
  • 财政年份:
    2022
  • 资助金额:
    $ 54.5万
  • 项目类别:
Transcriptomics of adherent endothelial cells for improved endothelialization of small-diameter vascular grafts
贴壁内皮细胞的转录组学用于改善小直径血管移植物的内皮化
  • 批准号:
    10543136
  • 财政年份:
    2022
  • 资助金额:
    $ 54.5万
  • 项目类别:
Regulation of epithelial function using targeted nanowires
使用靶向纳米线调节上皮功能
  • 批准号:
    10453894
  • 财政年份:
    2022
  • 资助金额:
    $ 54.5万
  • 项目类别:
Mechanisms of cell adhesion molecule LRRTM2 in basal and potentiated synaptic signaling
细胞粘附分子LRRTM2在基础和增强突触信号传导中的机制
  • 批准号:
    10605490
  • 财政年份:
    2022
  • 资助金额:
    $ 54.5万
  • 项目类别:
Mechanisms of cell adhesion molecule LRRTM2 in basal and potentiated synaptic signaling
细胞粘附分子LRRTM2在基础和增强突触信号传导中的机制
  • 批准号:
    10753395
  • 财政年份:
    2022
  • 资助金额:
    $ 54.5万
  • 项目类别:
Transcriptomics of adherent endothelial cells for improved endothelialization of small-diameter vascular grafts
贴壁内皮细胞的转录组学用于改善小直径血管移植物的内皮化
  • 批准号:
    10365253
  • 财政年份:
    2022
  • 资助金额:
    $ 54.5万
  • 项目类别:
Regulation of epithelial function using targeted nanowires
使用靶向纳米线调节上皮功能
  • 批准号:
    10677028
  • 财政年份:
    2022
  • 资助金额:
    $ 54.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了