Carbon in Reduced Mantle: Stability of Carbides and C-bearing Alloys in the System Fe-Ni-C

还原地幔中的碳:Fe-Ni-C 体系中碳化物和含碳合金的稳定性

基本信息

  • 批准号:
    1119295
  • 负责人:
  • 金额:
    $ 24.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

In the deep Earth carbon cycle, carbon is exchanged between Earth's near surface reservoirs (including the oceans, atmosphere, and crust) and the mantle. The storage of carbon in different reservoirs and the fluxes between them are of key importance to maintenance of Earth's climate and habitability on times scales of millions to billions of years and also may have principal influence on the dynamics of Earth's interior, including the operation of plate tectonics, the locus of melting, the formation of distinct geochemical reservoirs, and the origin of diamonds. The majority of the carbon participating in the deep Earth carbon cycle is stored in the mantle, but the mode of storage is poorly understood. Possible phases include carbonates, diamonds, FeNi alloys, carbides, or carbide melts. The stable phases are likely to vary with depth and laterally, but these variations are also not well-constrained. In much of the mantle, carbon is likely in reduced form, for which phase relations in the system Fe-Ni-C have key influence on the stable phase assemblages. In this project, the team will conduct experimental determinations of phase relations in the system Fe-Ni-C and make thermodynamic determinations of the properties of possible mantle carbides Fe3C and Fe7C3.Apart from studies in a narrow pressure interval applicable to commercial diamond synthesis (5.4-5.7 GPa), high pressure experimental data for the system Fe-Ni-C are sparse. To improve understanding of the hosts of reduced carbon in the mantle, it is planned to conduct experimental and thermodynamic studies of the system Fe-Ni-C. Experiments will be conducted between 2 and 15 GPa with a focus at ≥6 GPa and will address (a) the topology of phase stability in the system Fe-Ni-C (b) the relative stabilities of (Fe,Ni)3C and (Fe,Ni)7C3 carbides (c) the locus of stability of Fe-Ni-C carbide melts and (d) the solubility of C in FeNi alloy as a function of temperature and pressure Analyses of C in FeNi alloy will be performed by electron microprobe, using carefully calibrated procedures and detailed attention to analytical blanks. Additionally, the alloys will be analyzed for C by SIMS. To better understand the stability of carbides in the mantle, it is proposed to perform a calorimetric study of the heat capacities and entropies of Fe3C and Fe7C3 from 4 to 1900 K. The heat capacities of Fe3C have not been measured in 75 years and those of Fe7C3 have never been measured. Calorimetry will be performed in collaboration with Jean Tangeman of 3M and Edgar Dachs of Universtät Salzburg. The experimental and calorimetric results will be combined with existing constraints on carbide and silicate phase equilibria to construct thermodynamic models of the stability of reduced carbon phases in equilibrium with peridotite close to the P-T-fO2 conditions applicable to the mantle. Broader impacts of the project include collaboration between the UMN experimental petrology laboratory and materials scientists at 3M, international collaboration between the UMN group and Edgar Dachs at the Universtät Salzburg and the training of undergraduate and graduate students.
在地球深层碳循环中,碳在地球近地表储层(包括海洋、大气和地壳)和地幔之间进行交换。 不同储层中的碳储存以及它们之间的通量对于数百万至数十亿年时间尺度上地球气候和宜居性的维持至关重要,并且还可能对地球内部的动力学产生主要影响,包括板块构造的运行、熔化地点、独特地球化学储层的形成以及钻石的起源。 参与地球深层碳循环的大部分碳储存在地幔中,但人们对储存方式知之甚少。 可能的相包括碳酸盐、金刚石、FeNi合金、碳化物或碳化物熔体。 稳定相可能随深度和横向变化,但这些变化也没有得到很好的约束。 在地幔的大部分区域,碳可能以还原形式存在,因此 Fe-Ni-C 系统中的相关系对稳定的相组合具有关键影响。 在该项目中,该团队将对Fe-Ni-C体系中的相关系进行实验测定,并对可能的地幔碳化物Fe3C和Fe7C3的性质进行热力学测定。除了适用于商业金刚石合成的窄压力区间(5.4-5.7 GPa)的研究外,Fe-Ni-C体系的高压实验数据很少。 为了加深对地幔中还原碳主体的了解,计划对 Fe-Ni-C 系统进行实验和热力学研究。实验将在 2 至 15 GPa 之间进行,重点是 ≥6 GPa,并将解决 (a) Fe-Ni-C 系统中相稳定性的拓扑结构 (b) (Fe,Ni)3C 和 (Fe,Ni)7C3 碳化物的相对稳定性 (c) Fe-Ni-C 碳化物熔体的稳定性轨迹以及 (d) C 在 FeNi 合金中的溶解度与 温度和压力 FeNi 合金中的 C 分析将通过电子微探针进行,使用仔细校准的程序并详细关注分析空白。 此外,还将通过 SIMS 分析合金的 C。为了更好地了解地幔中碳化物的稳定性,建议对Fe3C和Fe7C3在4~1900 K的热容和熵进行量热研究。Fe3C的热容已经有75年没有被测量过,而Fe7C3的热容也从未被测量过。 量热法将与 3M 的 Jean Tangeman 和萨尔茨堡大学的 Edgar Dachs 合作进行。 实验和量热结果将与碳化物和硅酸盐相平衡的现有约束相结合,构建还原碳相与橄榄岩平衡的稳定性热力学模型,接近适用于地幔的 P-T-fO2 条件。 该项目更广泛的影响包括UMN实验岩石学实验室与3M材料科学家之间的合作、UMN集团与萨尔茨堡大学Edgar Dachs之间的国际合作以及本科生和研究生的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc Hirschmann其他文献

A wet mantle conductor?
湿的地幔导体?
  • DOI:
    10.1038/nature04528
  • 发表时间:
    2005-01-25
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Marc Hirschmann
  • 通讯作者:
    Marc Hirschmann

Marc Hirschmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc Hirschmann', 18)}}的其他基金

Collaborative Research: GLOW: Iron Redox Reactions in Magma Oceans and Differentiation of Rocky Planets
合作研究:GLOW:岩浆海洋中的铁氧化还原反应和岩石行星的分异
  • 批准号:
    2317026
  • 财政年份:
    2023
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
Mantle redox and partial melting: Pyroxene/basalt and pyroxene/spinel partitioning of Fe3+
地幔氧化还原和部分熔融:Fe3 的辉石/玄武岩和辉石/尖晶石分配
  • 批准号:
    2016215
  • 财政年份:
    2020
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a next-generation electron microprobe at the University of Minnesota
MRI:在明尼苏达大学购买下一代电子微探针
  • 批准号:
    1625422
  • 财政年份:
    2016
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
2015 Interior of the Earth GRC/GRS
2015 地球内部 GRC/GRS
  • 批准号:
    1463895
  • 财政年份:
    2015
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
ABR: Studies of Partial Melting of the Mantle and Deep Earth Volatile Cycles
ABR:地幔部分熔融和地球深部挥发循环的研究
  • 批准号:
    1426772
  • 财政年份:
    2014
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Continuing Grant
CSEDI: Integrated Study of H2O in the mantle
CSEDI:地幔中 H2O 的综合研究
  • 批准号:
    1161023
  • 财政年份:
    2012
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Continuing Grant
Near Solidus Partial Melting of Garnet Peridotite and the Origin of Alkali Olivine Basalt
石榴石橄榄岩近固相线部分熔融与碱橄榄石玄武岩成因
  • 批准号:
    1019744
  • 财政年份:
    2010
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Continuing Grant
ACQUISITION OF A NEW MICROFTIR SPECTROMETER TO AID EXPERIMENTAL AND ANALYTICAL STUDIES OF C-H-O VOLATILES IN THE MANTLE
购买新型显微红外光谱仪以辅助地幔中 C-H-O 挥发物的实验和分析研究
  • 批准号:
    0930034
  • 财政年份:
    2009
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
REU Site: Fluids in the Earth from Surface to Core
REU 站点:地球中从地表到地核的流体
  • 批准号:
    0649044
  • 财政年份:
    2007
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
Near Solidus Partial Melting of Garnet Peridotite and the Origin of Alkali Olivine Basalt
石榴石橄榄岩近固相线部分熔融与碱橄榄石玄武岩成因
  • 批准号:
    0609967
  • 财政年份:
    2006
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Continuing Grant

相似国自然基金

2C型蛋白磷酸酶REDUCED DORMANCY 5通过激酶-磷酸酶蛋白复合体调控种子休眠的分子机制
  • 批准号:
    32000250
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Process design of new reduced activation ferrite martensite (RAFM) steels for nuclear fusion reactors
核聚变反应堆用新型低活化铁素体马氏体(RAFM)钢的工艺设计
  • 批准号:
    EP/X030652/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Fellowship
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
CAREER: Physics-Infused Reduced-Order Modeling for Control Co-Design of Morphing Aerial Autonomous Systems
职业:用于变形空中自主系统控制协同设计的物理降阶建模
  • 批准号:
    2340266
  • 财政年份:
    2024
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
Implementing VVC codec in WebRTC video conferencing and Ultra Low Latency CDN for reduced network footprint
在 WebRTC 视频会议和超低延迟 CDN 中实施 VVC 编解码器,以减少网络占用
  • 批准号:
    10114427
  • 财政年份:
    2024
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Collaborative R&D
Elucidation of the mechanisms of Blood-testis barrier permeability and reduced sperm motility by platinum nanoparticles via extracellular vesicles
阐明铂纳米颗粒通过细胞外囊泡降低血睾屏障通透性和降低精子活力的机制
  • 批准号:
    23H03548
  • 财政年份:
    2023
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Operating Grants
Acceleration of High-Fidelity Numerical Simulation for Unsteady Flows with Low Reduced Frequency
低降频非定常流高保真数值模拟加速
  • 批准号:
    23KJ0528
  • 财政年份:
    2023
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ENIGMATEC: Efficient Netshape manufacturInG for reduced MAterials waste in production or ThermoElectric Coolers
ENIGMATEC:高效 Netshape 制造,减少生产或热电冷却器中的材料浪费
  • 批准号:
    10081270
  • 财政年份:
    2023
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Collaborative R&D
Liver Targeting Dihydroquinolizinone (DHQ) Molecules as Hepatitis B Virus Antivirals with Reduced Toxicity
肝脏靶向二氢喹嗪酮 (DHQ) 分子作为乙型肝炎病毒抗病毒药物,毒性降低
  • 批准号:
    10593566
  • 财政年份:
    2023
  • 资助金额:
    $ 24.44万
  • 项目类别:
Optimisation of multi-rotor wind turbines combined with advanced design techniques to enable lower environmental impacts and reduced cost of energy.
多转子风力涡轮机的优化与先进的设计技术相结合,可降低环境影响并降低能源成本。
  • 批准号:
    2894272
  • 财政年份:
    2023
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了