Manufacturing Nanostructured Contact Lenses for Drug Delivery

制造用于药物输送的纳米结构隐形眼镜

基本信息

  • 批准号:
    1129932
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

The objective of this research project is to develop particle-laden soft contact lenses as a new vehicle for ophthalmic drug delivery in order to reduce drug loss, eliminate systemic side effects, and improve drug efficacy and compliance. Nanoparticles are dispersed in hydrogels in several nanomanufacturing processes for improving mechanical, electrical, optical, and transport properties of hydrogels. In this project, the PIs plan to develop a new approach for preparing nanoparticles, explore the mechanisms of particle entrapment in hydrogels and evolution of microstructure, and the effect of the particle entrapment on physical and transport properties of the gels, when the particles are added to the polymerizing medium. Here, the project will focus on the specific application of controlling the drug release properties of the hydrogels to develop extended wear contact lenses for delivering ophthalmic drugs. The three specific aims of the research are: (i) Develop drug loaded highly crosslinked nanoparticles and understand the mechanism of particle formation and drug transport in the nanoparticles; (ii) Polymerize silicone-hydrogels in presence of the highly crosslinked nanoparticles to fabricate contact lenses loaded with drug encapsulated highly crosslinked nanoparticles; (iii) Characterize the particle loaded contact lenses to understand microstructure, drug transport, and all other properties of the gels relevant to the use of these materials for contact lenses. The research will combine both modeling and experiments to explore fundamentals of nanoparticle and lens preparation while focusing on the eventual goal of developing contact lenses for drug delivery. Currently, approximately 90 percent of all ophthalmic drug formulations are applied as eye-drops. While eye-drops are convenient and well accepted by patients, these suffer from low bioavailability (5 percent), side-effects due to systemic uptake, and low compliance. The compliance could be lower than 50 percent and further smaller when multiple eye drops are required each day, which contributes to worsening of the ophthalmic disease even when treatments are available. The bioavailability increases to about 50 percent when ophthalmic drugs are delivered through contact lenses because of the increase in the residence time of the drugs in the tear film. The increased bioavailability (50 percent) results in lower side effects, and will likely lead to higher compliance because of the continuous drug delivery for about 2-weeks with a contact lens. In preliminary results a novel approach has been developed of making ultrasmall (~4 nm) particles without utilizing any surfactant that release drugs for over 15 days. This novel approach of making nanoparticles without using surfactants is scalable to industrial standards, and it could be useful in several areas of nanomanufacturing, particularly when addition of surfactant is undesirable or too expensive. This concept has also been proven by fabricating transparent particle-laden gels loaded with novel nanoparticles containing a glaucoma drug timolol. It has also been established that contact lenses containing the highly crosslinked particles can deliver timolol at therapeutic rates for 2-3 weeks.If successful, the particle-loaded lenses will lead to a paradigm shift in ophthalmic drug delivery as it will eliminate several deficiencies in current delivery systems including very low bioavailability (5 percent), potential side-effects, and low compliance. The nanoparticle-loaded lenses will have higher bioavailability (50 percent), resulting in lower side effects, and will likely lead to higher compliance. This research is inherently multidisciplinary as the project combines expertise in new materials, transport, biomedical engineering, and modeling. Also, this research will likely leads to paradigm shifts in the area of ophthalmic drug delivery, and thus lead to a significant societal impact particularly in the area of glaucoma therapy which affects about 66.8 million people in the world, leaving 6.7 million with bilateral blindness.
本研究项目的目的是开发载微粒软性角膜接触镜作为眼科药物递送的新载体,以减少药物损失,消除全身副作用,提高药物疗效和依从性。 纳米颗粒在几种纳米制造工艺中分散在水凝胶中,用于改善水凝胶的机械、电学、光学和传输性能。 在这个项目中,PI计划开发一种制备纳米颗粒的新方法,探索颗粒在水凝胶中的截留机制和微观结构的演变,以及当颗粒加入聚合介质时,颗粒截留对凝胶的物理和传输性能的影响。 在这里,该项目将重点关注控制水凝胶的药物释放特性的具体应用,以开发用于递送眼科药物的长效隐形眼镜。 本研究的三个具体目标是:(i)开发载药的高交联纳米颗粒,并了解纳米颗粒形成和药物转运的机制;(ii)在高交联纳米颗粒存在下聚合硅酮水凝胶,以制备载药的高交联纳米颗粒隐形眼镜;(iii)表征载有颗粒的隐形眼镜,以了解微结构、药物转运以及与这些材料用于隐形眼镜相关的凝胶的所有其他性质。 该研究将结合联合收割机建模和实验来探索纳米颗粒和透镜制备的基本原理,同时专注于开发用于药物递送的接触透镜的最终目标。 目前,大约90%的眼科药物制剂作为滴眼剂施用。 虽然滴眼液很方便并且很受患者接受,但它们的生物利用度低(5%)、全身吸收引起的副作用以及依从性低。 当每天需要多次滴眼液时,依从性可能低于50%,甚至更小,即使在治疗可用的情况下,这也会导致眼科疾病的恶化。 当眼科药物通过隐形眼镜递送时,由于药物在泪膜中的停留时间增加,生物利用度增加到约50%。 增加的生物利用度(50%)导致较低的副作用,并可能导致更高的依从性,因为连续给药约2周的接触透镜。在初步结果中,已经开发了一种新的方法,可以在不使用任何表面活性剂的情况下制备超小(约4 nm)颗粒,并释放药物超过15天。 这种在不使用表面活性剂的情况下制造纳米颗粒的新方法可扩展到工业标准,并且它可以用于纳米制造的几个领域,特别是当添加表面活性剂是不期望的或太昂贵时。这一概念也已被证明,通过制造透明的粒子负载凝胶载有新的纳米粒子含有青光眼药物噻吗洛尔。 含有高度交联颗粒的隐形眼镜可以以治疗速率递送噻吗洛尔2-3周,如果成功,载颗粒镜片将导致眼科药物递送的范式转变,因为它将消除当前递送系统的几个缺陷,包括非常低的生物利用度(5%),潜在的副作用和低顺应性。装载纳米颗粒的镜片将具有更高的生物利用度(50%),从而降低副作用,并可能导致更高的依从性。 这项研究本质上是多学科的,因为该项目结合了新材料,运输,生物医学工程和建模方面的专业知识。 此外,这项研究可能会导致眼科药物输送领域的范式转变,从而产生重大的社会影响,特别是在青光眼治疗领域,全球约有6680万人受到影响,其中670万人患有双侧失明。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anuj Chauhan其他文献

Molecular modeling of surfactant covered oil-water interfaces: Dynamics, microstructure, and barrier for mass transport.
表面活性剂覆盖的油水界面的分子建模:动力学、微观结构和质量传输屏障。
  • DOI:
    10.1063/1.2939123
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashish Gupta;Anuj Chauhan;D. Kopelevich
  • 通讯作者:
    D. Kopelevich
Harnessing the potential of emEupatorium adenophorum/em: Activated carbon synthesis, optimization, and antimicrobial properties
利用紫茎泽兰的潜力:活性炭合成、优化及抗菌性能
  • DOI:
    10.1016/j.psep.2025.107574
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    7.800
  • 作者:
    Anuj Chauhan;Shital Rathod;Riya Aneja;Neha Kamboj;Vipin Kumar Saini
  • 通讯作者:
    Vipin Kumar Saini
A Comparison of Different Websites Used for Testing Several Features of a Website: A Case Study of amity.edu
用于测试网站多项功能的不同网站的比较:以 amity.edu 为例
  • DOI:
    10.23956/ijarcsse/v7i6/0326
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Chauhan;Madhulika
  • 通讯作者:
    Madhulika
Influence of hierarchical porosity on the adsorption selectivity of activated carbons prepared via different activation methods for biogas upgradation
分级孔隙率对不同活化方法制备的活性炭在沼气提质中吸附选择性的影响
  • DOI:
    10.1016/j.fuel.2025.135651
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Arpita Kumari;Kanishtha Kaushik;Aparajita Shankar;Riya Aneja;Anuj Chauhan;Vipin Kumar Saini
  • 通讯作者:
    Vipin Kumar Saini
Review of Approaches for Increasing Ophthalmic Bioavailability for Eye Drop Formulations
  • DOI:
    10.1208/s12249-021-01977-0
  • 发表时间:
    2021-03-14
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Olivia L. Lanier;Miranda G. Manfre;Claire Bailey;Zhen Liu;Zachary Sparks;Sandesh Kulkarni;Anuj Chauhan
  • 通讯作者:
    Anuj Chauhan

Anuj Chauhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anuj Chauhan', 18)}}的其他基金

Fabrication of Gold Nanoparticle-loaded Contact Lenses for Treating Ocular Cystinosis
用于治疗眼部胱氨酸病的金纳米粒子隐形眼镜的制造
  • 批准号:
    1762625
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Fabrication of Gold Nanoparticle-loaded Contact Lenses for Treating Ocular Cystinosis
用于治疗眼部胱氨酸病的金纳米粒子隐形眼镜的制造
  • 批准号:
    1903704
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: DNA Amplification in a novel integrated microchip platform with temporal thermal control
合作研究:具有时间热控制的新型集成微芯片平台中的 DNA 扩增
  • 批准号:
    0700354
  • 财政年份:
    2007
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Dispersion of Nanoparticles in Hydrogels for Ophthalmic Drug Delivery
纳米颗粒在水凝胶中的分散用于眼科药物输送
  • 批准号:
    0426327
  • 财政年份:
    2005
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing grant
DNA Separation on a Chip by Lateral Electric Fields
通过横向电场在芯片上分离 DNA
  • 批准号:
    0302271
  • 财政年份:
    2003
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SBIR Phase I: All-Semiconductor Nanostructured Lenses for High-Tech Industries
SBIR 第一阶段:用于高科技行业的全半导体纳米结构镜头
  • 批准号:
    2335588
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Manufacturing Nanostructured Metallic Materials via 3D Printed Polymers
通过 3D 打印聚合物制造纳米结构金属材料
  • 批准号:
    DE240100917
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
  • 批准号:
    2337507
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Design theory-based nanostructured leaf-vein networks for selective VOC sensing
基于理论的纳米结构叶脉网络用于选择性 VOC 传感
  • 批准号:
    EP/W022451/1
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
Strain-Hardening Mechanisms in Ferrous Bulk Nanostructured Metals: Towards Managing Ultra-high Strength and Large Ductility
黑色金属块体纳米结构金属的应变硬化机制:实现超高强度和大延展性
  • 批准号:
    23H00234
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Nanostructured Silicon-Based Wearable and Implantable Biosensors
纳米结构硅基可穿戴和植入式生物传感器
  • 批准号:
    FL220100185
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Australian Laureate Fellowships
Parametric design software for nanostructured CRISPR payloads
用于纳米结构 CRISPR 有效负载的参数化设计软件
  • 批准号:
    10602823
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
Design theory-based nanostructured leaf-vein networks for selective VOC sensing
基于理论的纳米结构叶脉网络用于选择性 VOC 传感
  • 批准号:
    EP/W024284/1
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
Development of Nanostructured Scaffolds for Stem Cell Culture to Directly Regulate Cellular Functions via Natural Polysaccharide Nanofibers
开发用于干细胞培养的纳米结构支架,通过天然多糖纳米纤维直接调节细胞功能
  • 批准号:
    23H00345
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了