Collaborative Research: DNA Amplification in a novel integrated microchip platform with temporal thermal control

合作研究:具有时间热控制的新型集成微芯片平台中的 DNA 扩增

基本信息

  • 批准号:
    0700354
  • 负责人:
  • 金额:
    $ 6.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-04-01 至 2010-03-31
  • 项目状态:
    已结题

项目摘要

COLLABORATIVE RESEARCH: DNA AMPLIFICATION IN A NOVEL INTEGRATED MICROCHIP PLATFORM WITH TEMPORAL THERMAL CONTROLImplementing precise time and space dependent heating and cooling in a microchip is potentially useful in a wide array of areas including reactions, separation, detection, etc. This project aims to develop such a microchip, and understand the fundamental implications of the temperature changes on fluid flow and heat and mass transfer, while developing a chip that can perform rapid DNA amplification. While microfluidic DNA amplification devices have been fabricated, their use in practical applications is nonexistent due to small throughputs. Here we propose a new paradigm for PCR in a microchannel that is based on temporal temperature cycling. To accomplish this objective, we propose a new chip design for implementing precise and accurate temperature gradients (both spatial and temporal). Furthermore, we propose a synergistic approach that leverages the strengths of both the PI's by combining modeling and experiments to develop a clear understanding of fundamental issues relevant to the proposed device. These issues include contribution of thermal expansion-contraction, and reactions on dispersion and amplification efficiency, and the effect of various design and operating parameters on the fluid-flow and mass transfer in the device. Such an understanding is crucial for designing an optimal microfluidic flow reactor for DNA amplification with a high throughput. The intellectual merit of the program is manifested in the goals of the project that include (i) development of a Smart Thermal Microchip (STM) for precise temperature modulation, (ii) an improved quantitative understanding of transport in microscale systems that are subjected to temporally changing temperatures; (iii) development of a numerical and analytical tools to analyze heat transfer in the Smart Thermal Microchip and to predict the dispersion and amplification of DNA samples using various input parameters such as the channel dimensions, number and frequency of the temperature cycles, dispersion coefficient of the DNA and the initial plug size; (iv) development of a novel idea for continuous and high throughput polymerase chain reaction on a microfluidic chip without an imposed pressure driven flow. The results of this proposal will improve our understanding of mass transfer in systems with reactions and temporal temperature gradients, and in particular lead to a thorough understanding of the transport processes involved in the DNA amplification by polymerase chain reaction on a microchip. These results will lead to a rational design and operation of these chips. The results of this research will have broader impacts in a number of areas. The Smart Thermal Microchip will find applications in other areas related to reactions, separations and detection. Furthermore, the amplification process is an integral part of DNA analysis and the importance of DNA analysis cannot be overstated. It is already important in various areas such as analysis of clinical samples, identification of mutations, detecting cancer, testing safety of genetically modified foods, forensic analysis and applications of DNA analysis are only expected to grow considerably. It is envisioned that the results of this study will enable optimization of amplification devices and additionally lead to development of a novel high throughput device. The educational program couples core skills of thermal and mass transport to reaction kinetics. The research will be integrated with the curriculum development of the Chemical Engineering Department of the University of Florida and of Brown University in the division of engineering and the chemical and biochemical engineering program. The program supports development of new courses in transport processes. The program offers excellent opportunities to new undergraduate laboratories exploring microfluidics. Students also apply their skills in transport phenomena to unveil methods for detecting microbial threats. The program is truly interdisciplinary and invites opportunities for collaborations. Strong ties are promoted between the fundamental engineering research and assay development in biotechnology and nanotechnology industries. Lastly, the research program unites the interests of the two PIs and will foster significant collaborations and exchange of ideas between the two research groups.
在微芯片中实现精确的时间和空间相关加热和冷却,在包括反应、分离、检测等在内的广泛领域具有潜在的用途。本项目旨在开发这样的微芯片,并了解温度变化对流体流动和传热传质的基本含义,同时开发一种可以进行快速DNA扩增的芯片。虽然微流控DNA扩增装置已经被制造出来,但由于其通量小,其在实际应用中的应用尚不存在。在这里,我们提出了一种基于时间温度循环的微通道PCR新范式。为了实现这一目标,我们提出了一种新的芯片设计,用于实现精确和精确的温度梯度(空间和时间)。此外,我们提出了一种协同方法,通过结合建模和实验来利用PI的优势,以清楚地了解与所提议设备相关的基本问题。这些问题包括热膨胀-收缩的贡献,对扩散和放大效率的影响,以及各种设计和操作参数对装置内流体流动和传质的影响。这种理解对于设计最佳的高通量DNA扩增微流控反应器至关重要。该计划的智力价值体现在项目的目标中,包括(i)开发用于精确温度调制的智能热微芯片(STM), (ii)改进对受时间变化温度影响的微尺度系统中传输的定量理解;(iii)开发一种数值和分析工具来分析智能热芯片中的热传递,并使用各种输入参数(如通道尺寸、温度循环的数量和频率、DNA的分散系数和初始插头尺寸)预测DNA样品的分散和扩增;(iv)在微流控芯片上开发连续和高通量聚合酶链反应的新想法,而无需施加压力驱动流。本研究的结果将提高我们对具有反应和时间温度梯度系统的传质的理解,特别是对微芯片上聚合酶链反应扩增DNA的传递过程的深入理解。这些结果将有助于这些芯片的合理设计和操作。这项研究的结果将在许多领域产生更广泛的影响。智能热芯片将在与反应、分离和检测相关的其他领域找到应用。此外,扩增过程是DNA分析的一个组成部分,DNA分析的重要性怎么强调都不为过。它已经在临床样本分析、突变鉴定、癌症检测、转基因食品安全性测试、法医分析和DNA分析应用等各个领域发挥了重要作用,预计只会大幅增长。预计本研究的结果将使放大设备的优化,并导致一种新的高通量设备的开发。教育计划将热和质量传递的核心技能与反应动力学相结合。该研究将与佛罗里达大学化学工程系和布朗大学工程系以及化学与生物化学工程项目的课程开发相结合。该计划支持开发运输过程中的新课程。该计划为探索微流体的新本科实验室提供了极好的机会。学生还将运用他们在运输现象方面的技能来揭示检测微生物威胁的方法。该计划是真正的跨学科,并邀请合作的机会。生物技术和纳米技术行业的基础工程研究和分析开发之间的紧密联系得到了促进。最后,该研究项目联合了两个pi的利益,并将促进两个研究小组之间的重要合作和思想交流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anuj Chauhan其他文献

Molecular modeling of surfactant covered oil-water interfaces: Dynamics, microstructure, and barrier for mass transport.
表面活性剂覆盖的油水界面的分子建模:动力学、微观结构和质量传输屏障。
  • DOI:
    10.1063/1.2939123
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashish Gupta;Anuj Chauhan;D. Kopelevich
  • 通讯作者:
    D. Kopelevich
Harnessing the potential of emEupatorium adenophorum/em: Activated carbon synthesis, optimization, and antimicrobial properties
利用紫茎泽兰的潜力:活性炭合成、优化及抗菌性能
  • DOI:
    10.1016/j.psep.2025.107574
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    7.800
  • 作者:
    Anuj Chauhan;Shital Rathod;Riya Aneja;Neha Kamboj;Vipin Kumar Saini
  • 通讯作者:
    Vipin Kumar Saini
A Comparison of Different Websites Used for Testing Several Features of a Website: A Case Study of amity.edu
用于测试网站多项功能的不同网站的比较:以 amity.edu 为例
  • DOI:
    10.23956/ijarcsse/v7i6/0326
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Chauhan;Madhulika
  • 通讯作者:
    Madhulika
Influence of hierarchical porosity on the adsorption selectivity of activated carbons prepared via different activation methods for biogas upgradation
分级孔隙率对不同活化方法制备的活性炭在沼气提质中吸附选择性的影响
  • DOI:
    10.1016/j.fuel.2025.135651
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Arpita Kumari;Kanishtha Kaushik;Aparajita Shankar;Riya Aneja;Anuj Chauhan;Vipin Kumar Saini
  • 通讯作者:
    Vipin Kumar Saini
Review of Approaches for Increasing Ophthalmic Bioavailability for Eye Drop Formulations
  • DOI:
    10.1208/s12249-021-01977-0
  • 发表时间:
    2021-03-14
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Olivia L. Lanier;Miranda G. Manfre;Claire Bailey;Zhen Liu;Zachary Sparks;Sandesh Kulkarni;Anuj Chauhan
  • 通讯作者:
    Anuj Chauhan

Anuj Chauhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anuj Chauhan', 18)}}的其他基金

Fabrication of Gold Nanoparticle-loaded Contact Lenses for Treating Ocular Cystinosis
用于治疗眼部胱氨酸病的金纳米粒子隐形眼镜的制造
  • 批准号:
    1762625
  • 财政年份:
    2018
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Fabrication of Gold Nanoparticle-loaded Contact Lenses for Treating Ocular Cystinosis
用于治疗眼部胱氨酸病的金纳米粒子隐形眼镜的制造
  • 批准号:
    1903704
  • 财政年份:
    2018
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Manufacturing Nanostructured Contact Lenses for Drug Delivery
制造用于药物输送的纳米结构隐形眼镜
  • 批准号:
    1129932
  • 财政年份:
    2011
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Dispersion of Nanoparticles in Hydrogels for Ophthalmic Drug Delivery
纳米颗粒在水凝胶中的分散用于眼科药物输送
  • 批准号:
    0426327
  • 财政年份:
    2005
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Continuing grant
DNA Separation on a Chip by Lateral Electric Fields
通过横向电场在芯片上分离 DNA
  • 批准号:
    0302271
  • 财政年份:
    2003
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
  • 批准号:
    2323968
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
  • 批准号:
    2323969
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
  • 批准号:
    10797460
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2204656
  • 财政年份:
    2022
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemical Biology of DNA repair
合作研究:DNA修复的化学生物学
  • 批准号:
    2204228
  • 财政年份:
    2022
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Engineering DNA and RNA computation through simulation, sequence design, and experimental verification
合作研究:FET:中:通过模拟、序列设计和实验验证进行 DNA 和 RNA 计算
  • 批准号:
    2211792
  • 财政年份:
    2022
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2204657
  • 财政年份:
    2022
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了