EAGER: Accurate and Efficient Surrogate Modeling Applied to Computational Mechanics

EAGER:准确高效的代理建模应用于计算力学

基本信息

  • 批准号:
    1132364
  • 负责人:
  • 金额:
    $ 10.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2013-01-31
  • 项目状态:
    已结题

项目摘要

The objective of this EArly-concept Grant for Exploratory Research (EAGER) project is to apply High Dimensional Model Representation (HDMR) technique to construct highly accurate and efficient surrogate computational mechanics models. Advanced computational mechanics simulations typically deal with very large scale models that are extremely time consuming. HDMR technique uses systemic sampling procedure relating outputs of the original physical model to its inputs to produce highly accurate and computationally cheap equivalent models. These low order surrogate models are expected to dramatically reduce the cost of very large scale simulations while maintaining the accuracy of the original models. The proposed methodology is extendable to other fields of engineering besides computational mechanics.This research has the potential to transform current state of modeling philosophy and simulation capability in computational mechanics, and enable very large scale simulations at a reasonable cost. Simulations hitherto intractable due to very high computational burden can be performed efficiently with the proposed methodology. Additionally, it will provide new avenues in the development of accurate yet efficient simulation methods. Educational objectives will focus on (1) training graduate as well as undergraduate students in the area of surrogate modeling, and (2) developing new course materials for the existing courses on computational mechanics. The research being at the confluence of diverse areas of science and engineering such as mechanics, statistics and computational methods, will provide rich educational and research experiences for undergraduate and graduate students in state-of-the-art computational modeling and simulation.
这个早期概念探索性研究资助(EAGER)项目的目标是应用高维模型表示(HDMR)技术来构建高精度和高效率的替代计算力学模型。高级计算力学模拟通常处理非常耗时的超大规模模型。HDMR技术使用系统采样过程将原始物理模型的输出与其输入相关联,以产生高度准确且计算成本低的等效模型。这些低阶代理模型有望大大降低超大规模模拟的成本,同时保持原始模型的准确性。所提出的方法可扩展到计算力学以外的其他工程领域,这一研究有可能改变当前计算力学建模理念和仿真能力的现状,并以合理的成本实现超大规模的仿真。迄今为止棘手的模拟由于非常高的计算负担,可以有效地进行所提出的方法。此外,它将提供新的途径,在准确而有效的模拟方法的发展。教育目标将集中在(1)培训研究生以及本科生在代理建模领域,(2)开发新的课程材料,为现有的课程计算力学。该研究是在科学和工程的不同领域,如力学,统计和计算方法的融合,将提供丰富的教育和研究经验,为本科生和研究生在国家的最先进的计算建模和模拟。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Spandan Maiti其他文献

Mechanics of anesthetic needle penetration into human sciatic nerve
  • DOI:
    10.1016/j.jbiomech.2018.04.026
  • 发表时间:
    2018-06-06
  • 期刊:
  • 影响因子:
  • 作者:
    Joseph E. Pichamuthu;Spandan Maiti;Maria G. Gan;Nicole M. Verdecchia;Steven L. Orebaugh;David A. Vorp
  • 通讯作者:
    David A. Vorp
Wall Tensile Stress Maps of Human Aneurysmal Aorta Demonstrate a High Biaxiality Ratio Corresponds with Wall Tissue Microstructure and Local Oxidative Stress Response Distinctly for Bicuspid and Tricuspid Aortic Valve Patients
  • DOI:
    10.1007/s10439-025-03771-6
  • 发表时间:
    2025-06-17
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Lauren V. Huckaby;Ronald N. Fortunato;Leonid V. Emerel;Julie A. Phillippi;Marie Billaud;David A. Vorp;Spandan Maiti;Thomas G. Gleason
  • 通讯作者:
    Thomas G. Gleason

Spandan Maiti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Spandan Maiti', 18)}}的其他基金

Enhancement of Strength and Toughness of Layered Polymer Composites by Strain Hardening
通过应变硬化提高层状聚合物复合材料的强度和韧性
  • 批准号:
    1636064
  • 财政年份:
    2016
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
EAGER: Accurate and Efficient Surrogate Modeling Applied to Computational Mechanics
EAGER:准确高效的代理建模应用于计算力学
  • 批准号:
    1002869
  • 财政年份:
    2010
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant

相似海外基金

Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
  • 批准号:
    24K16962
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: A Theoretical Exploration of Efficient and Accurate Clustering Algorithms
职业生涯:高效准确聚类算法的理论探索
  • 批准号:
    2337832
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Continuing Grant
Efficient and accurate scaling Graph Neural Networks for giant graphs
针对巨型图的高效、准确的缩放图神经网络
  • 批准号:
    24K20787
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
  • 批准号:
    10638121
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
  • 批准号:
    2321329
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
CDS&E: ECCS: Accurate and Efficient Uncertainty Quantification and Reliability Assessment for Computational Electromagnetics and Engineering
CDS
  • 批准号:
    2305106
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Improving patient safety and hospital hygiene through the efficient and accurate identification of patients with antimicrobial resistant organisms (AROs) using clinical support tools in electronic medical records
使用电子病历中的临床支持工具高效、准确地识别抗菌药物耐药微生物 (ARO) 患者,提高患者安全和医院卫生
  • 批准号:
    478042
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Operating Grants
Towards More Efficient and Accurate Deep Learning Models for Segmentation, Classification, and Tracking
建立更高效、更准确的分割、分类和跟踪深度学习模型
  • 批准号:
    RGPIN-2022-04953
  • 财政年份:
    2022
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了