A Scalable Cavity Architecture for Quantum Optoelectronics in the Strong-Coupling Regime

强耦合体系中量子光电的可扩展腔架构

基本信息

项目摘要

A Scalable Cavity Architecture for Quantum Optoelectronicsin the Strong-Coupling Regime Project Summary As technology reaches the nano-scales, we rapidly approach the classical limits. Control of the quantum world stands out as a grand scientific challenge. In this realm, spectacular progress has been made on diverse, individual quantum systems. Integration and coherent coupling of multiple quantum systems in a scalable fashion, however, remains extremely challenging. In this program, we propose a collaborative efforts to tackle this challenge using a new cavity system with strong matter-light couplings. The proposed system utilizes a versatile, designable photonic-crystal mirror to control the properties of hybrid photon-exciton modes, the polaritons, in the strong-coupling regime. It builds on the recent advancement of both photonic crystal research in the engineering community and the quantum coherence research of polariton in the physics community. The hybrid cavity architecture will enable flexible control of polaritons and coupling of multiple polariton quantum systems on the same chip and thereby lay the foundation for future technologies based on collective quantum coherence, such as ultrafast and energy efficent lasers and switches, quantum circuits and interometers, and quantum simulators.Accomplishing the goal requires a concerted effort of computer-aided design and modeling of the new cavity architecture, nanofabrication of the devices, and laser and quantum optical spectroscopy of the fabricated device. These tasks will be carried out through collaboration of a US and a German team:The US team, led by the PI at the University of Michigan, specializes in experimental quantum optics, coherence spectroscopy, matter-light interaction, and design and modeling of cavity systems. The US team will lead the efforts of design, modeling, and optical measurements of the new cavity system. Students will visit the German site and will be trained by the German team on nano-fabrication of the photonic crystal mirrors.The German team is led by Dr. Alfred Forchel and Dr. Martin Kamp at the Physikalisches Institut at the Universität Würzburg. The German team is a world leader in semiconductor materials and devices with expertise in molecular-beam epitaxy growth and nanofabrication of III-As microcavities. The German team will perform MBE growth of the structures, and will provide facilities, training, and technical support in nano-fabrication of the photonic crystals. Members of the team will visit Michigan to participate in optical measurements.Intellectual Merit The program will develop a scalable cavity architecture for controlling collective quantum coherence of semiconductor polaritons. Polaritons are a special quantum system with robust coherence, high operating tempeartures, and a built-in matter light interface. However, control of polaritons is severely limited at present by rigid cavity structure. We will develop in this program a new cavity architecture for polaritons that uniquely allows flexible confinement, control, and coupling of individual and multiple polariton systems, while preserving the desired quantum coherence and nonlinear interactions. The new system will enable research of coupled quantum gasses on a scalable solid-state platform, and will bridge quantum phenomena and advanced optoelectronic technolgy ranging from ultrafast and energy efficent lasers and switches to circuits and simulators for quantum computing.Broader Impacts The program provides US graduate students the opportunity to be trained by the world?s leading experts on nano-science, and to work in an international, multi-culture environment. The German students will benefit similarly. These will provide invaluable experience and training for the students and prepare them as future leaders in the international science and engineering community. The shared knowledge and expertise will broadly benefit the quantum science and nanotechnology communities in both countries. The program also provides opportunities to engage undergraduate students in cutting edge research and mentoring women and minorities interested in science. Scientific advancement through the research program will be disseminated to a broad audience via international summer schools, conferences, and education and outreach activities at K-12 schools.
一种用于量子光电子学的可扩展腔结构在强耦合机制中项目综述随着技术达到纳米级,我们迅速接近经典的极限。控制量子世界是一项重大的科学挑战。在这个领域,各种不同的个人量子系统已经取得了惊人的进步。然而,以可扩展的方式集成和相干耦合多个量子系统仍然具有极大的挑战性。在这个项目中,我们提出了一种合作的努力来解决这一挑战,使用一种具有强物质-光耦合的新的腔系统。该系统利用一个多功能的、可设计的光子晶体反射镜来控制强耦合区域中混合光子-激子模的性质,即极化激子。它建立在工程界的光子晶体研究和物理界的偏振子的量子相干研究的最新进展的基础上。这种混合腔结构将实现对同一芯片上多个极化子量子系统的灵活控制和耦合,从而为未来基于集体量子相干的技术奠定基础,如超快和高能效的激光器和开关、量子电路和干涉仪以及量子模拟器。实现这一目标需要计算机辅助设计和建模、器件的纳米制造以及所制造器件的激光和量子光学光谱。这些任务将通过一个美国和一个德国团队的合作来执行:由密歇根大学圆周率领导的美国团队专门从事实验量子光学、相干光谱、物质-光相互作用以及腔系统的设计和建模。美国团队将领导新腔系统的设计、建模和光学测量工作。学生们将参观德国的工厂,并接受德国团队关于纳米制造光子晶体反射镜的培训。德国团队由德国维尔茨堡大学物理研究所的Alfred Forchel博士和Martin Kamp博士领导。德国团队是半导体材料和器件领域的世界领先者,在分子束外延生长和III-As微腔的纳米制造方面拥有专业知识。德国团队将对结构进行分子束外延生长,并将提供光子晶体纳米制造方面的设施、培训和技术支持。团队成员将访问密歇根州参加光学测量。该计划将开发一种可扩展的腔结构,用于控制半导体极化子的集体量子相干性。极化激元是一种特殊的量子系统,具有强大的相干性、高的工作温度和内置的物质光界面。然而,目前刚性腔结构严重限制了对极化子的控制。我们将在这个项目中开发一种新的极化子腔结构,它独特地允许单个和多个极化子系统的灵活限制、控制和耦合,同时保持所需的量子相干性和非线性相互作用。新系统将在可扩展的固态平台上研究耦合量子气体,并将量子现象与先进的光电子技术联系起来,从超快、高能效的激光和开关到用于量子计算的电路和模拟器。Broader Impact项目为美国研究生提供了接受世界顶尖纳米科学专家S培训的机会,并在国际、多元文化环境中工作。德国学生也将同样受益。这些将为学生提供宝贵的经验和培训,并使他们成为未来国际科学和工程界的领导者。共享的知识和专业知识将广泛惠及两国的量子科学界和纳米科技界。该项目还提供机会,让本科生参与尖端研究,并指导对科学感兴趣的女性和少数族裔。通过研究计划取得的科学进步将通过国际暑期学校、会议以及K-12学校的教育和外展活动向广大受众传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Deng其他文献

Effect of locally accumulated crushed stone soil on the infiltration of intense rainfall: a case study on the reactivation of an old deep landslide deposit
局部堆积的碎石土对强降雨入渗的影响——以旧深滑坡沉积物的活化为例
Heuristic Algorithms for One-Slot Link Scheduling in Wireless Sensor Networks under SINR
SINR下无线传感器网络单时隙链路调度的启发式算法
Reactivation of a huge ancient landslide due to the infiltration of surface water
由于地表水的渗透导致巨大的古代山体滑坡重新激活
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Guoxiang Tu;Da Huang;Hui Deng
  • 通讯作者:
    Hui Deng
High-Quality Stepped Impedance Resonators Suitable for Circuit-QED Measurement of Superconducting Artificial Atoms
适用于超导人造原子电路 QED 测量的高质量阶梯式阻抗谐振器
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yirong Jin;Hui Deng;Xueyi Guo;Yarui Zheng;Keqiang Huang;Luhui Ning;Dongning Zheng
  • 通讯作者:
    Dongning Zheng
Is ethanol consumption beneficial for oral lichen planus?
食用乙醇对口腔扁平苔藓有益吗?
  • DOI:
    10.1016/j.mehy.2008.10.029
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Xiaomeng Xu;Donghui Chen;Liqin Mei;Hui Deng
  • 通讯作者:
    Hui Deng

Hui Deng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Deng', 18)}}的其他基金

EAGER: SUPER: Light and Warm Polariton Driven Superconductors (PoDS)
EAGER:SUPER:光和温暖的极化子驱动超导体(PoDS)
  • 批准号:
    2132470
  • 财政年份:
    2021
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Continuing Grant
NSF-BSF: Transformation, modulation, and coupling of polariton and exciton quantum fluids
NSF-BSF:极化子和激子量子流体的转化、调制和耦合
  • 批准号:
    2004287
  • 财政年份:
    2020
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Continuing Grant
CAREER: Collective Quantum Phenomena of Matter and Light by Design
职业:通过设计实现物质和光的集体量子现象
  • 批准号:
    1150593
  • 财政年份:
    2012
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Continuing Grant

相似海外基金

Chromaticity-adaptive direct white light generation from luminescent carbogenic nanomaterials coupled with nanophotonic cavity
发光碳原纳米材料与纳米光子腔耦合产生色度自适应直接白光
  • 批准号:
    24K17589
  • 财政年份:
    2024
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EA/Ed: Acquisition of a carbon dioxide and methane Cavity Ringdown Spectrometer for education and research
EA/Ed:购买二氧化碳和甲烷腔衰荡光谱仪用于教育和研究
  • 批准号:
    2329285
  • 财政年份:
    2024
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Standard Grant
Spirit Use Case 2: Complex cavity ventilation/ compartment pressure relief digital twin
Spirit 用例 2:复杂腔体通风/隔间压力释放数字孪生
  • 批准号:
    10089679
  • 财政年份:
    2024
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Collaborative R&D
CAREER: Cavity-Enforced Structure and Reactivity of High-Valent Iron Oxo, Nitrosyl, and Superoxo Complexes
职业:高价铁氧合、亚硝酰和超氧配合物的空腔强化结构和反应性
  • 批准号:
    2339280
  • 财政年份:
    2024
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Continuing Grant
SuperPlanckian Radiation via Cavity Guided Waves
通过腔导波的超普朗克辐射
  • 批准号:
    23H01352
  • 财政年份:
    2023
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Highly efficient photocurrent and spin polarized current generation by cavity polariton
通过腔极化子产生高效光电流和自旋极化电流
  • 批准号:
    23H01942
  • 财政年份:
    2023
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of coherent Raman spectroscopy based on cavity-enhanced phase-matched nonlinear optics
基于腔增强相位匹配非线性光学的相干拉曼光谱研究进展
  • 批准号:
    23H01987
  • 财政年份:
    2023
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER: Moire Cavity Single Emitter Lasers (MOCSELs)
EAGER:莫尔腔单发射激光器 (MOCSEL)
  • 批准号:
    2234513
  • 财政年份:
    2023
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Standard Grant
Cavity Ring Down Spectrometer (CRDS)
光腔衰荡光谱仪 (CRDS)
  • 批准号:
    516693059
  • 财政年份:
    2023
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Major Research Instrumentation
Generation of the transplantation model of human iPS cell-derived airway epithelial sheet into nasal cavity
人iPS细胞来源的气道上皮片鼻腔移植模型的建立
  • 批准号:
    23K08961
  • 财政年份:
    2023
  • 资助金额:
    $ 5.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了