Reliable quantification of emerging contaminant mass flows in wastewater systems - combining predictive modeling & novel field approaches

废水系统中新兴污染物质量流量的可靠量化 - 结合预测模型

基本信息

  • 批准号:
    1132954
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

This project will catalyze a collaboration between US researchers and collaborators at the Swiss Federal Institute of Aquatic Science and Technology (Eawag). Although wastewater treatment plants are built to minimize the negative environmental impacts of wastewater, they were not designed to remove emerging contaminants. Given the hazardous, dynamic, and logistically -challenging nature of sewers, few studies are conducted and only limited data for emerging contaminants in sewers are available. An understanding of contaminant transport and biodegradation is needed to obtain accurate estimates of contaminant (e.g., illicit drug) mass flows. Such estimates then can be used to obtain the ?hidden information? in wastewater that is needed for understanding the societal problem of illegal drug use. In addition, more accurate estimates of population are needed to advance the interpretation of data on illicit drugs obtained from raw wastewater. The objective of the catalytic activities described herein is to plan and execute preliminary in-situ sewer tracer tests in collaboration with environmental engineers at Eawag. Tracer tests to be conducted in the Zürich, Switzerland sewer system will consist of the injection of stable isotope-labeled illicit drugs so that their in-situ transformation can be quantified under realistic wastewater conditions. Prior to conducting the in-situ tracer tests, the initial phase of the collaboration will focus on modeling studies that are needed to further refine the hypotheses that will be tested in the preliminary tracer tests. The Zurich sewer system was selected because it is a well-instrumented system for which access is granted. With the combination of modeling and preliminary tracer tests, the biological and physical factors that impact the transformation of contaminant loads that arrive at wastewater treatment plants will be identified for further study. Endogenous and exogenous substances that occur in wastewater also will be identified for use in full-scale tracer tests as alternative indicators of population when quantifying temporal and spatial trends in contaminant loads. An international, interdisciplinary team including environmental chemists, a sociologist (drug epidemiologist), and an environmental engineer specializing in wastewater sampling will bring together the expertise necessary to address the technical challenges that must be overcome to reliably use data on illicit drugs obtained from wastewater to address the difficult societal problem of drug abuse. Novel data obtained from the in-situ tests will advance the science of modeling and wastewater sampling and our understanding of the accuracy and uncertainty in contaminant mass flows. Identifying sources of uncertainty will fundamentally change the level of decisions that can be made using data obtained from municipal wastewater. The proposed research will advance the concept of using human urinary biomarkers for quantifying changes in population and this has significant implications for making decisions in the area of drug epidemiology (a social science). The benefits of the proposed research activity will provide assessment methods to verify the projected increase in pharmaceutical loading to wastewater treatment plants and the environment. The research program will complement the PI?s current outreach activities that are centered around creating and disseminating outreach modules to teachers and their minority school children in the SMILE (Science and Math Investigative Learning Experiences) program that demonstrate the principles of separating and identifying molecules in complex environmental systems. A Ph.D. student in toxicology, who is a member of the Northern Paiute Tribe, will be trained in modeling and in tracer test design and execution. An undergraduate student will receive training in wastewater sampling and chemical analysis.
该项目将促进美国研究人员与瑞士联邦水产科学技术研究所(Eawag)合作者之间的合作。 虽然废水处理厂的建设是为了尽量减少废水对环境的负面影响,但它们的设计并不是为了去除新出现的污染物。鉴于下水道的危险性、动态性和物流挑战性,很少进行研究,并且下水道中新出现的污染物的数据有限。 需要了解污染物的迁移和生物降解,以获得污染物的准确估计(例如,非法药物)大规模流动。 这样的估计,然后可以用来获得?隐藏的信息?这是理解非法药物使用的社会问题所需要的。此外,还需要对人口进行更准确的估计,以促进对从未经处理的废水中获得的非法药物数据的解释。 本文所述催化活动的目的是与Eawag的环境工程师合作,计划和执行初步的现场下水道示踪剂测试。 将在瑞士苏黎世的下水道系统中进行的示踪剂测试将包括注入稳定的同位素标记的非法药物,以便在实际废水条件下对其就地转化进行量化。在进行现场示踪剂测试之前,合作的初始阶段将侧重于进一步完善将在初步示踪剂测试中测试的假设所需的建模研究。 之所以选择苏黎世的下水道系统,是因为它是一个设备齐全的系统,可以使用。 结合模拟和初步示踪试验,将确定影响到达污水处理厂的污染物负荷转化的生物和物理因素,以供进一步研究。还将确定废水中出现的内源性和外源性物质,用于全面示踪试验,作为在量化污染物负荷的时间和空间趋势时人口的替代指标。 一个包括环境化学家、社会学家(药物流行病学家)和专门从事废水采样的环境工程师在内的国际跨学科团队将汇集必要的专业知识,以应对必须克服的技术挑战,从而可靠地使用从废水中获得的非法药物数据,解决药物滥用这一棘手的社会问题。 从现场测试中获得的新数据将推进建模和废水采样的科学,以及我们对污染物质量流量的准确性和不确定性的理解。 确定不确定性的来源将从根本上改变使用从城市污水中获得的数据所能做出的决策水平。 拟议的研究将推进使用人类尿液生物标志物量化人口变化的概念,这对药物流行病学(社会科学)领域的决策具有重要意义。 拟议的研究活动的好处将提供评估方法,以核实废水处理厂和环境中药物负荷的预计增加。 研究计划将补充PI?目前的外展活动,围绕创建和传播外展模块的教师和他们的少数民族学校的孩子在SMILE(科学和数学研究性学习经验)计划,展示了分离和识别分子的原则,在复杂的环境系统。博士学位一名毒理学学生是北方派尤特部落的成员,他将接受建模和示踪剂试验设计和执行方面的培训。 一名本科生将接受废水取样和化学分析方面的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Field其他文献

Assessing Potential Bias in PFAS Concentrations in Groundwater and Surface Water Samples
评估地下水和地表水样品中 PFAS 浓度的潜在偏差
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tom Wanzek;Hannah McIntyre;Elisabeth Hawley;Rula Deeb;Dorin Bogdan;Charles Shaefer;Bill DiGuiseppi;Amanda Struse;Trever Schwichtenberg;Jennifer Field
  • 通讯作者:
    Jennifer Field

Jennifer Field的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Field', 18)}}的其他基金

Collaborative Research: Fluorochemical Signatures in Municipal Waste and Landfill Leachate
合作研究:城市废物和垃圾渗滤液中的氟化物特征
  • 批准号:
    1067144
  • 财政年份:
    2011
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
RESEARCH INITIATION AWARD: In-Situ Transformation and Transport of Surfactants in Sewage-Contaminated Groundwater
研究启动奖:污水污染地下水中表面活性剂的原位转化和运移
  • 批准号:
    9409171
  • 财政年份:
    1994
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant

相似国自然基金

高维半参数模型的稳健统计推断
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
玉米幼苗干旱胁迫应答NAC转录因子基因的筛选和鉴定
  • 批准号:
    31201268
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
  • 批准号:
    EP/Y000145/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Research Grant
KnowLEdGE creation and iNcreasing acreage of legumes in Diversified cropping systems by quAntification of theiR ecosYstem services (LEGENDARY)
通过量化生态系统服务来创造知识并增加多样化种植系统中的豆类种植面积(传奇)
  • 批准号:
    10089689
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    EU-Funded
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
  • 批准号:
    EP/X041093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track L: UAV-assisted dual-comb spectroscopic detection, localization, and quantification of multiple atmospheric trace-gas emissions
NSF 收敛加速器轨道 L:无人机辅助的双梳光谱检测、定位和多种大气痕量气体排放的量化
  • 批准号:
    2344395
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
CAREER: Virtual physiology of human tumor tissue for malignancy quantification
职业:用于恶性肿瘤定量的人体肿瘤组织虚拟生理学
  • 批准号:
    2340149
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2419423
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Quantification of the Impact of Hydrologic Controls on Anomalous Solute Transport and Mixing Dynamics in Partially Saturated Porous Media
水文控制对部分饱和多孔介质中异常溶质输运和混合动力学影响的量化
  • 批准号:
    2329250
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Conference: Power of Diversity in Uncertainty Quantification (PoD UQ)
会议:不确定性量化中多样性的力量 (PoD UQ)
  • 批准号:
    2403506
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
  • 批准号:
    2340586
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
UQ4FM: Uncertainty quantification algorithms for flood modelling
UQ4FM:洪水建模的不确定性量化算法
  • 批准号:
    EP/X040941/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了