GOALI: Thermal Transport by Phonons in Device-Grade Nitride Nanostructures

GOALI:设备级氮化物纳米结构中声子的热传输

基本信息

  • 批准号:
    1133394
  • 负责人:
  • 金额:
    $ 39.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

PI: Jonathan A. MalenProposal Number: 1133394Nitride-based semiconductors are a centerpiece of light-emitting diodes (LEDs) for solid-state lighting, select high-frequency/power electronics, and future multi-junction photovoltaics. Progress towards commercialization of these technologies demands high current densities that compel improved thermal management to lower operating temperatures. While packaging strategies improve heat dissipation, preliminary data show that the device itself has a large thermal resistance. Thermal conductivity (k) measurements on device-grade nitride films show very low values of k in thin 100nm aluminum nitride (AlN) and 100nm gallium nitride (GaN) layers. Electron microscopy images suggest that these reductions are caused by structural imperfections inherent to industrial growth processes. As yet, a clear scientific explanation is lacking.Intellectual Merit: The objective of this GOALI proposal is to study thermal transport in nitride semiconductor heterostructures composed of GaN, AlN, and indium gallium nitride (InGaN) thin films (~100nm), fabricated by scalable growth processes. An interdisciplinary team of academic investigators at Carnegie Mellon University (CMU), in partnership with Kyma Technologies, will study the nature of thermal transport by phonons in nitride nanostructures. Defective films and interfaces separated by distances commensurate to the bulk phonon mean free paths will be considered. Open scientific questions include: What is the thermal boundary resistance (R) at the device-substrate interface and between nitride layers? Can highly defective crystals transport heat in a manner similar to disordered materials? How do growth techniques impact thin film thermal properties?To answer these questions, the investigation will focus on a common base structure that includes a sapphire, silicon carbide, or GaN substrate with an AlN nucleation layer followed by an InGaN buffer layer. Specific inquiries include: (i) the effect of the substrate on R and k of the AlN nucleation layer, (ii) the effect of growth technique on k and R of the AlN nucleation layer, and (iii) the effect of indium concentration on k and R of the InGaN buffer layer. Controlled growth of nitrides and imaging of defect density and structure (Davis, Paskova) will be used to inform the atomic structure for molecular dynamics simulations (McGaughey). Simulation results will be compared with direct measurements of k and R on these samples, made using a pump-probe optical method called Frequency Domain Thermoreflectance (Malen).Broader Impact: Partnership with Kyma Technologies makes this research directly transferable to industry, where nitride devices have the potential to revolutionize lighting and to outperform silicon-based electronics. Kyma recognizes the critical need for incorporating thermal-management into the nitride device structure. Access to Kyma's growth technologies, which represent the future of nitrides, will make any discoveries far-reaching. Continuing collaborations on nitride science and technology with the Cree Corporation and the Naval Research Laboratory further support the need for this research. The educational activities will expose students to industry-driven academic research through curriculum development, guest lectures and seminars, and summer internships at Kyma. Kyma, in turn, will receive exposure at CMU through integration of the research topics and results within courses taught by the academic PIs. An LED-based outreach activity "Lighting: The Next Generation" will be developed for the Society of Women Engineers High School Day, Pittsburgh public schools, and the YWCA TechGyrls program.
PI:Jonathan A. Malen提案编号:1133394氮化物基半导体是固态照明、选择高频/电力电子和未来多结光电子的发光二极管(LED)的核心。这些技术商业化的进展需要高电流密度,这迫使改进热管理以降低操作温度。虽然封装策略改善了散热,但初步数据显示,器件本身具有较大的热阻。器件级氮化物薄膜的热导率(k)测量显示,100 nm氮化铝(AlN)和100 nm氮化镓(GaN)薄层的k值非常低。电子显微镜图像表明,这些减少是由于工业增长过程中固有的结构缺陷。智力上的优点:GOALI的目标是研究氮化物半导体异质结构中的热输运,该异质结构由GaN、AlN和氮化铟镓(InGaN)薄膜(~ 100 nm)组成,通过可扩展的生长工艺制造。卡内基梅隆大学(CMU)的一个跨学科学术研究团队与Kyma Technologies合作,将研究氮化物纳米结构中声子的热传输性质。有缺陷的薄膜和界面分离的距离相称的体声子平均自由程将被考虑。公开的科学问题包括:器件-衬底界面和氮化物层之间的边界热阻(R)是多少?高度缺陷的晶体能以类似于无序材料的方式传热吗?生长技术如何影响薄膜的热性能?为了回答这些问题,调查将集中在一个共同的基础结构,包括蓝宝石,碳化硅,或GaN衬底与氮化铝成核层,其次是InGaN缓冲层。具体查询包括:(i)衬底对AlN成核层的R和k的影响,(ii)生长技术对AlN成核层的k和R的影响,以及(iii)铟浓度对InGaN缓冲层的k和R的影响。氮化物的受控生长以及缺陷密度和结构的成像(Davis,Paskova)将用于为分子动力学模拟(McGaughey)提供原子结构信息。模拟结果将与使用称为频域热反射(Malen)的泵浦-探测光学方法对这些样品进行的k和R直接测量进行比较。更广泛的影响:与Kyma Technologies的合作使这项研究可以直接应用于工业,氮化物器件有可能彻底改变照明并超越硅基电子产品。 Kyma认识到将热管理纳入氮化物器件结构的迫切需要。Kyma的生长技术代表了氮化物的未来,将使任何发现都具有深远的意义。与Cree公司和海军研究实验室在氮化物科学和技术方面的持续合作进一步支持了这项研究的需要。教育活动将通过课程开发,客座讲座和研讨会以及Kyma的暑期实习让学生接触行业驱动的学术研究。Kyma反过来将通过整合学术PI教授的课程中的研究主题和结果在CMU获得曝光。一个基于LED的推广活动“照明:下一代”将为女工程师协会高中日、匹兹堡公立学校和基督教女青年会TechGyrls项目开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Malen其他文献

Thermomechanical modeling-driven process parameter refinement in WC-Ni cemented carbide laser powder bed fusion

Jonathan Malen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Malen', 18)}}的其他基金

Collaborative Research: Electric Field- and Light-Modulated Thermal Transport in Superatomic Crystals
合作研究:超原子晶体中的电场和光调制热传输
  • 批准号:
    2017159
  • 财政年份:
    2020
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Amplifying the Efficiency of Tungsten Disulfide (WS2) Thermoelectric Devices
合作研究:提高二硫化钨 (WS2) 热电器件的效率
  • 批准号:
    1901972
  • 财政年份:
    2019
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
GOALI: Local thermoreflectance measurement of evaporative heat transfer in the thin film region of a dynamic meniscus
目标:动态弯月面薄膜区域蒸发传热的局部热反射测量
  • 批准号:
    1804752
  • 财政年份:
    2018
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Proposal for Partial Funding of the 9th U.S.-Japan Joint Seminar on Nanoscale Transport Phenomena, Tokyo, Japan, July 2-5, 2017
第九届美日纳米尺度输运现象联合研讨会部分资助提案,日本东京,2017 年 7 月 2-5 日
  • 批准号:
    1737436
  • 财政年份:
    2017
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
GOALI:Tradeoffs in Heat Dissipation and Optical Performance at Plasmonic Interfaces
目标:等离子界面散热和光学性能的权衡
  • 批准号:
    1403447
  • 财政年份:
    2014
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
CAREER:Thermal Energy Transport in Organic-Inorganic Hybrid Materials
职业:有机-无机杂化材料中的热能传输
  • 批准号:
    1149374
  • 财政年份:
    2012
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant

相似国自然基金

Thermal-lag自由活塞斯特林发动机启动与可持续运行机理研究
  • 批准号:
    51806227
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Thermal Transport in Polymer Nanofibers under Strain Modulation
职业:应变调制下聚合物纳米纤维的热传输
  • 批准号:
    2340208
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Continuing Grant
Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices
通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却
  • 批准号:
    2336038
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
CAREER: Prediction and understanding of thermal transport across successive interfaces
职业:预测和理解连续界面上的热传输
  • 批准号:
    2337749
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Continuing Grant
Reveal of thermal transport in disordered materials with local order and hierarchical structure by topological and network approaches
通过拓扑和网络方法揭示具有局部有序和分层结构的无序材料中的热传输
  • 批准号:
    23H01360
  • 财政年份:
    2023
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Collective Dynamics and Resonances of Phonons and Dislocations in Thermal Transport
热传输中声子和位错的集体动力学和共振
  • 批准号:
    2121895
  • 财政年份:
    2023
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Continuing Grant
CDS&E: Coupled Electro-Thermal Transport in Two-Dimensional Materials and Heterostructures
CDS
  • 批准号:
    2302879
  • 财政年份:
    2023
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Quantum magnetic and thermal transport by pi-electron spin
π电子自旋的量子磁和热传输
  • 批准号:
    23K17906
  • 财政年份:
    2023
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Understanding Thermal Transport Properties in Electrically Conductive Polymers
了解导电聚合物的热传输特性
  • 批准号:
    2312559
  • 财政年份:
    2023
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
  • 批准号:
    2321302
  • 财政年份:
    2023
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了