CAREER:Thermal Energy Transport in Organic-Inorganic Hybrid Materials
职业:有机-无机杂化材料中的热能传输
基本信息
- 批准号:1149374
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-15 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Jonathan A. Malen, Carnegie Mellon UniversityProposal Number: CBET-1149374The objective of this CAREER proposal is to study thermal transport in organic-inorganic hybrid materials. Organic-Inorganic Hybrid Materials are attractive alternatives to single crystal semiconductors for electronics, photonics, and energy conversion because they can be manufactured with scalable solution-based processes. For these applications the organic-inorganic interface has been leveraged to control electronic transport, but thermal properties remain uncultivated. It is hypothesized that collective properties, emergent at the organic-inorganic interface, will enable unprecedented control of the thermal phonon spectrum in hybrid materials. The intellectual merit of the proposal centers around the experimental measurement of thermal transport in two novel hybrid materials: self assembled monolayers (SAMs) and nanocrystal superlattices (NCSLs). SAMs are 2-D molecular crystals that form on inorganic surfaces, and NCSLs are 3-D arrays of inorganic spheres spaced by organic molecules. Coupling and alignment of dissimilar vibrational states in the organic and inorganic components can be controlled by chemistry to yield diverse thermal transport properties. These effects will be experimentally interrogated through (i) the development of a new continuous-wave laser method to probe an unparalleled range of phonon mean free paths in solids, (ii) measurements of thermal conductivity and phonon mean free path distributions in NCSLs, and (iii) systematic measurements of SAM interface thermal conductance.The ability to manipulate the phonon spectrum will broadly impact a wide range of applications in energy and biology. Due to short phonon wavelengths (10 nm), hybrid based phonon-optics would achieve much higher resolution than visible light having much longer wavelengths. Such non-destructive imaging can be extremely useful in assays of biological, organic, and inorganic samples. Further, solution chemistry based manufacturing and tunable electro-optic properties make hybrids ideal for energy conversion technologies that demand wide deployment, including thermoelectrics, photovoltaics, and LEDs. Engineering hybrid devices requires knowledge of their hitherto unknown thermal properties, whereas phonon control can yield unique performance upgrades. Bandpass filtering of phonons by SAMs can increase the efficiency of optoelectronics, while decoupled thermal and electronic transport properties make NCSLs ideal for thermoelectric waste heat conversion. An integrated educational plan that aspires to demystify the phonon is highlighted by the "Phonon-Simulator", a model spring-mass system that simulates vibrations in matter. This educational kit will be paired with online software and deployed throughout the Pittsburgh Public Schools (PPS) to introduce the origins of heat transfer through an interactive educational program. The local focus will be underrepresented pre-college students from PPS as well as students at Carnegie Mellon. Broader dissemination will be achieved by workshops at the Intel International Science & Engineering Fair and the Siemens Competition, aimed at jointly recruiting scholars into engineering.
项目负责人:Jonathan A. Malen,卡内基梅隆大学。项目编号:cbet -1149374。本项目旨在研究有机-无机杂化材料的热传递。有机-无机杂化材料是电子、光子学和能量转换领域单晶半导体的有吸引力的替代品,因为它们可以用可扩展的基于解决方案的工艺制造。在这些应用中,利用有机-无机界面来控制电子输运,但热性能仍未得到培养。据推测,在有机-无机界面上出现的集体性质将使混合材料中的热声子谱得到前所未有的控制。该建议的智力价值集中在两种新型杂化材料的热输运实验测量:自组装单层(SAMs)和纳米晶体超晶格(NCSLs)。SAMs是在无机表面上形成的二维分子晶体,而NCSLs是由有机分子间隔的无机球体组成的三维阵列。有机和无机组分中不同振动态的耦合和排列可以通过化学控制来产生不同的热输运性质。这些效应将通过(i)开发一种新的连续波激光方法来探测固体中无与伦比的声子平均自由程范围,(ii)测量NCSLs中的热导率和声子平均自由程分布,以及(iii)系统测量SAM界面热导。操纵声子谱的能力将对能源和生物领域的广泛应用产生广泛影响。由于声子波长短(10纳米),混合声子光学将获得比波长长得多的可见光更高的分辨率。这种非破坏性成像在生物、有机和无机样品的分析中非常有用。此外,基于溶液化学的制造和可调谐的电光特性使混合材料成为需要广泛部署的能量转换技术的理想选择,包括热电、光伏和led。工程混合设备需要了解其迄今未知的热特性,而声子控制可以产生独特的性能升级。通过SAMs对声子进行带通滤波可以提高光电子学效率,而去耦的热和电子输运特性使NCSLs成为热电废热转换的理想选择。一个旨在揭开声子神秘面纱的综合教育计划被“声子模拟器”所强调,“声子模拟器”是一个模拟物质振动的弹簧质量系统模型。这套教育工具包将与在线软件配对,并在匹兹堡公立学校(PPS)部署,通过互动教育计划介绍传热的起源。当地的重点将是来自PPS的未被充分代表的大学预科学生以及卡内基梅隆大学的学生。更广泛的传播将通过英特尔国际科学与工程博览会和西门子竞赛的研讨会来实现,旨在联合招募工程领域的学者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Malen其他文献
Thermomechanical modeling-driven process parameter refinement in WC-Ni cemented carbide laser powder bed fusion
- DOI:
10.1007/s00170-025-16059-9 - 发表时间:
2025-07-08 - 期刊:
- 影响因子:3.100
- 作者:
Alexander Gourley;Guadalupe Quirarte;Jonathan Malen;Jack Beuth;B. Reeja-Jayan - 通讯作者:
B. Reeja-Jayan
Jonathan Malen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Malen', 18)}}的其他基金
Collaborative Research: Electric Field- and Light-Modulated Thermal Transport in Superatomic Crystals
合作研究:超原子晶体中的电场和光调制热传输
- 批准号:
2017159 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Amplifying the Efficiency of Tungsten Disulfide (WS2) Thermoelectric Devices
合作研究:提高二硫化钨 (WS2) 热电器件的效率
- 批准号:
1901972 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
GOALI: Local thermoreflectance measurement of evaporative heat transfer in the thin film region of a dynamic meniscus
目标:动态弯月面薄膜区域蒸发传热的局部热反射测量
- 批准号:
1804752 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Proposal for Partial Funding of the 9th U.S.-Japan Joint Seminar on Nanoscale Transport Phenomena, Tokyo, Japan, July 2-5, 2017
第九届美日纳米尺度输运现象联合研讨会部分资助提案,日本东京,2017 年 7 月 2-5 日
- 批准号:
1737436 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
GOALI:Tradeoffs in Heat Dissipation and Optical Performance at Plasmonic Interfaces
目标:等离子界面散热和光学性能的权衡
- 批准号:
1403447 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
GOALI: Thermal Transport by Phonons in Device-Grade Nitride Nanostructures
GOALI:设备级氮化物纳米结构中声子的热传输
- 批准号:
1133394 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
Thermal-lag自由活塞斯特林发动机启动与可持续运行机理研究
- 批准号:51806227
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Nonequilibrium effects in thermochemical energy storage: linking microstructure to thermal transport
职业:热化学储能中的非平衡效应:将微观结构与热传输联系起来
- 批准号:
2238705 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Transfer of Momentum and Energy in the Nanoscale Using Quantum and Thermal Fluctuations
职业:利用量子和热涨落在纳米尺度上传递动量和能量
- 批准号:
1941680 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Investigation of Nanoscale Radiative Heat Transfer for Enhanced Thermal Infrared Energy Conversion and Cooling
职业:研究纳米级辐射传热以增强热红外能量转换和冷却
- 批准号:
1836967 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Investigation of Nanoscale Radiative Heat Transfer for Enhanced Thermal Infrared Energy Conversion and Cooling
职业:研究纳米级辐射传热以增强热红外能量转换和冷却
- 批准号:
1941743 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Development and Characterization of New High Thermal Conductivity Materials for Energy-Efficient Electronics and Photonics
职业:用于节能电子和光子学的新型高导热材料的开发和表征
- 批准号:
1753393 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Engineering Thermal Energy Transport Using Embedded Nanoparticles
职业:利用嵌入纳米颗粒进行热能传输工程
- 批准号:
1653270 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Reliable and Fault Tolerant Super Energy Efficient Nanomagnetic Computing in the Presence of Thermal Noise
职业:存在热噪声时可靠且容错的超能效纳米磁计算
- 批准号:
1253370 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Low Temperature Microplasmas For Thermal Energy Conversion, Education, and Outreach
职业:用于热能转换、教育和推广的低温微等离子体
- 批准号:
1254273 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Ambient Thermal Energy Harvesting for Power Production
职业:环境热能收集用于发电
- 批准号:
1053729 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Metamaterial-Enhanced Thermal Energy Harvesters
职业:超材料增强型热能收集器
- 批准号:
1055203 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant