Evaporation and Combustion of the Nanofluid-type Fuels at Elevated Temperatures and Pressures
纳米流体型燃料在高温高压下的蒸发和燃烧
基本信息
- 批准号:1134006
- 负责人:
- 金额:$ 30.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1134006QiaoThe goal of this research is to develop a fundamental understanding of the evaporation and combustion behavior of nanofluid-type fuels as well as the underlying mechanisms that are responsible for this behavior. Nanofluid fuels, an exciting new class of nanotechnology-based fuels, are liquid fuels with stable suspension of nanometer-sized particles. Depending on the physical, chemical, and electrical properties of the added nanomaterials, nanofluid fuels can achieve better performance, e.g., increased energy density, easier and faster ignition, enhanced catalytic effects, improved combustion efficiency, and reduced emissions. However, knowledge about nanofluid fuels remains very limited. Our research proposes to start down the path of developing a fundamental understanding of nanofluid-type fuels. This work will help to explain the fundamental mechanisms of how the addition of nanoscale materials to liquid fuels can enhance combustion performance. The research objectives include understanding (1) The interfacial properties and colloidal stability of nanofluid fuels; (2) The effects of particle addition on droplet evaporation and the ignition process, especially the role of thermal radiation; (3) The effects of various nanomaterials on the burning characteristics of small droplets at elevated temperatures and pressures.Intellectual Merit: The novelty and strength of the proposal are threefold: (1) Nanofluid-type fuels are a new class of fuels and have been rarely studied by the combustion community. This project will unravel the controlling physics and chemistry of these fuels for the first time, thereby developing significant new knowledge and understanding. (2) The proposal is interdisciplinary by nature. It stands at the intersection of nanotechnology, colloidal science, mass and heat transport, and combustion science. Therefore this proposal has the potential to enlarge our knowledge base on several frontiers of science at once. (3) The proposed work is transformational because it will, for the first time, provide a quantitative understanding of how the addition of various nanoscale materials affects the evaporation and combustion processes of liquid fuels. This understanding will provide important guidelines for the optimized use of nanomaterials in terms of material, surface functionalization, particle size, and concentration in liquid fuels to achieve the desired performance.Broader Impacts: The social benefits of this study lie in the areas of fuel economy, pollution control, and aerospace and space applications. In aerospace engineering, interest is increasing in developing a new generation of hypersonic flights, which largely depend on the ability to use liquid fuels that offer high energy density, short ignition delays, and high reaction rates. The nanofluid-type fuels with addition of nanoenergetics or nanocatalysts could potentially solve this problem. Nanofluid fuels can also be used for power/thrust generation under special circumstances. They can provide higher power or thrust for a longer time for compact systems where the volume of the carried fuel is limited, such as unmanned aerial vehicles (UAVs) or power Microelectromechanical Systems (MEMS). They can also provide reliable and easy ignition of fuel for devices under extreme conditions, such as extremely lean combustion conditions or very low temperatures. Furthermore, the nanofluid fuels containing various nanostructured ignition agents may allow for the distributed ignition of fuels, which could greatly improve combustion efficiencies. The automobile industry has tested the idea of adding a small amount of nanocatalysts to diesel fuels and heavy oils, which shows improved combustion efficiency and simultaneously reduced particular and NOx emissions. Potential dramatic increases in fuel efficiency and decreases in pollutant emissions because of novel tailored fuels can lower fuel consumption, improve public health, and reduce our dependence on foreign oil. Lastly, the PI will collaborate with the Louis Stokes Alliance for Minority Participation (LSAMP) Program to recruit minority students to participate in research.
[134006 .乔]本研究的目标是对纳米流体型燃料的蒸发和燃烧行为以及导致这种行为的潜在机制有一个基本的了解。纳米流体燃料是一种基于纳米技术的令人兴奋的新型燃料,它是一种具有稳定悬浮的纳米级颗粒的液体燃料。根据所添加纳米材料的物理、化学和电学性质,纳米流体燃料可以实现更好的性能,例如提高能量密度、更容易和更快地点火、增强催化效果、提高燃烧效率和减少排放。然而,关于纳米流体燃料的知识仍然非常有限。我们的研究计划从发展对纳米流体型燃料的基本理解开始。这项工作将有助于解释在液体燃料中添加纳米级材料如何提高燃烧性能的基本机制。研究目标包括:(1)纳米流体燃料的界面特性和胶体稳定性;(2)颗粒添加对液滴蒸发和点火过程的影响,特别是热辐射的作用;(3)不同纳米材料对高温高压下小液滴燃烧特性的影响。该建议的新颖性和优势在于:(1)纳米流体型燃料是一种新型燃料,很少被燃烧界研究。该项目将首次揭示这些燃料的控制物理和化学,从而发展重要的新知识和理解。(2)本提案具有跨学科性质。它是纳米技术、胶体科学、质量和热传递以及燃烧科学的交汇点。因此,这一建议有可能立即扩大我们在几个科学前沿的知识基础。(3)这项工作具有变革性,因为它将首次定量地了解各种纳米级材料的添加如何影响液体燃料的蒸发和燃烧过程。这种理解将为在材料、表面功能化、颗粒大小和液体燃料浓度方面优化纳米材料的使用提供重要的指导,以实现所需的性能。更广泛的影响:这项研究的社会效益在于燃料经济、污染控制以及航空航天和空间应用领域。在航空航天工程中,开发新一代高超音速飞行的兴趣正在增加,这在很大程度上取决于使用具有高能量密度、短点火延迟和高反应速率的液体燃料的能力。添加纳米能量学或纳米催化剂的纳米流体型燃料有望解决这一问题。纳米流体燃料也可用于在特殊情况下产生动力/推力。它们可以为携带燃料体积有限的紧凑型系统提供更长时间的更高功率或推力,例如无人驾驶飞行器(uav)或动力微机电系统(MEMS)。它们还可以在极端条件下为设备提供可靠和容易的燃料点火,例如极贫燃烧条件或极低温度。此外,含有各种纳米结构点火剂的纳米流体燃料可能允许燃料的分布式点火,这可以大大提高燃烧效率。汽车工业已经测试了在柴油和重油中添加少量纳米催化剂的想法,这表明燃烧效率得到提高,同时减少了特定和氮氧化物的排放。由于新型定制燃料可以降低燃料消耗,改善公众健康,并减少我们对外国石油的依赖,从而可能大幅提高燃油效率,减少污染物排放。最后,PI将与路易斯·斯托克斯少数民族参与联盟(LSAMP)项目合作,招募少数民族学生参与研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Qiao其他文献
Effects of nitrogen addition on the competition between the invasive species Flaveria bidentis and two native species
氮添加对入侵物种黄顶菊与两种本地物种竞争的影响
- DOI:
10.1134/s1067413615040086 - 发表时间:
2015-07 - 期刊:
- 影响因子:1.1
- 作者:
Zhang Feng-Juan;Chen Feng-Xin;Li Qiao;Xu Hai-Yun;Jia Yue-Yue - 通讯作者:
Jia Yue-Yue
Energy Efficient Resource Allocation Approach for Renewable Energy Powered Heterogeneous Cellular Networks
可再生能源供电的异构蜂窝网络的节能资源分配方法
- DOI:
10.32604/cmc.2020.010048 - 发表时间:
2020 - 期刊:
- 影响因子:3.1
- 作者:
Wei Yifei;Gong Yu;Li Qiao;Song Mei;Wang Xiaojun - 通讯作者:
Wang Xiaojun
Nonlinear seismic assessment of isolated high-speed railway bridge subjected to near-fault earthquake scenarios
近断层地震情景下高速铁路孤桥非线性地震评估
- DOI:
10.1080/15732479.2019.1639775 - 发表时间:
2019 - 期刊:
- 影响因子:3.7
- 作者:
Chen Ling kun;Jiang Li zhong;Qin Hong xi;Zhang Nan;Ling Liang;Zhang Qing hua;Li Qiao;Cao Da fu - 通讯作者:
Cao Da fu
A Predictive Study of the Dynamic Development of the P-Wave Terminal Force in Lead V in the Electrocardiogram in Relation to Long-Term Prognosis in Non-ST-Segment Elevation Acute Coronary Syndrome Patients during Hospitalization.
心电图 V 导联 P 波终端力动态发展与非 ST 段抬高急性冠状动脉综合征患者住院期间长期预后的预测研究。
- DOI:
10.1111/anec.12254 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Li Qiao;Gu Li-Dan;Zhang Chen;Liu Wei;Peng Yong;Chai Hua;Xu Yuan-Ning;Wei Jia-Fu;Chen Mao;Huang De-Jia - 通讯作者:
Huang De-Jia
One new bufadienolide biotransformed from cinobufagin by Cunninghamella elegans
一种新的蟾蜍二烯内酯,由秀丽隐杆线虫从华蟾蜍精生物转化而来
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Li Qiao;Yu Zhi Zhou;Huan Chen;Jia;Y. Pei - 通讯作者:
Y. Pei
Li Qiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Qiao', 18)}}的其他基金
I-Corps: Hydrogen Micro Gas Turbines for Small Unmanned Aerial Vehicles (UAVs)
I-Corps:用于小型无人机 (UAV) 的氢气微型燃气轮机
- 批准号:
2219674 - 财政年份:2022
- 资助金额:
$ 30.48万 - 项目类别:
Standard Grant
CAREER:Understanding Sponteneous Combustion of Hydrogen and Oxygen in Nanobubbles
职业:了解纳米气泡中氢和氧的自燃
- 批准号:
1254648 - 财政年份:2013
- 资助金额:
$ 30.48万 - 项目类别:
Standard Grant
BRIGE: Ignition, Burning Rate, Chemistry and Transport Properties of Alternative Fuels
BRIGE:替代燃料的点火、燃烧速率、化学和运输特性
- 批准号:
0927243 - 财政年份:2009
- 资助金额:
$ 30.48万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344722 - 财政年份:2024
- 资助金额:
$ 30.48万 - 项目类别:
Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344723 - 财政年份:2024
- 资助金额:
$ 30.48万 - 项目类别:
Standard Grant
SBIR Phase I: Sustainable Rare Earth Element Production from Coal Combustion Byproducts
SBIR 第一阶段:利用煤炭燃烧副产品可持续生产稀土元素
- 批准号:
2335379 - 财政年份:2024
- 资助金额:
$ 30.48万 - 项目类别:
Standard Grant
ENTICE: Enhanced Ammonia Cracking to Improve Engine Combustion and Emissions
ENTICE:增强氨裂解以改善发动机燃烧和排放
- 批准号:
10096979 - 财政年份:2024
- 资助金额:
$ 30.48万 - 项目类别:
Collaborative R&D
M1H Zero Carbon Hydrogen Internal Combustion Engine
M1H零碳氢内燃机
- 批准号:
10098267 - 财政年份:2024
- 资助金额:
$ 30.48万 - 项目类别:
Collaborative R&D
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
- 批准号:
2339518 - 财政年份:2024
- 资助金额:
$ 30.48万 - 项目类别:
Continuing Grant
EAGER: Enhancement of Ammonia combustion by spatiotemporal control of plasma kinetics
EAGER:通过等离子体动力学的时空控制增强氨燃烧
- 批准号:
2337461 - 财政年份:2024
- 资助金额:
$ 30.48万 - 项目类别:
Standard Grant
CAREER: Controlled Copper Oxide Reduction Using Inverse Dust Flames for Improved Chemical Looping Combustion
职业:使用逆粉尘火焰控制氧化铜还原以改善化学循环燃烧
- 批准号:
2339150 - 财政年份:2024
- 资助金额:
$ 30.48万 - 项目类别:
Continuing Grant
Accurate Determination of Branching Fractions in Ammonia Combustion
氨燃烧中支化分数的准确测定
- 批准号:
2329341 - 财政年份:2024
- 资助金额:
$ 30.48万 - 项目类别:
Standard Grant
Catalytic Combustion of Ammonia as a Zero-Carbon Fuel: Catalyst Design and Mechanistic Studies
氨作为零碳燃料的催化燃烧:催化剂设计和机理研究
- 批准号:
EP/X03593X/1 - 财政年份:2023
- 资助金额:
$ 30.48万 - 项目类别:
Research Grant