IDR: Collaborative Research: A Partnership for Multiscale Experimental Study of CO2 Leakage and Vertical Flow in Geologic Carbon Sequestration
IDR:合作研究:地质碳封存中二氧化碳泄漏和垂直流多尺度实验研究的伙伴关系
基本信息
- 批准号:1134397
- 负责人:
- 金额:$ 44.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1134397 Clarens/1133849 Peters Geologic carbon sequestration (GCS) is likely to play an important role in near-term efforts to provide carbon-neutral energy even though it has not yet been definitively demonstrated that CO2 injected into deep geologic formations will stay in place. This project assembles an interdisciplinary partnership to study the conditions that drive or inhibit leakage of CO2 through formation caprocks and the buoyancy-driven transport of CO2 through both caprocks and porous media. This integrated and multidisciplinary effort will generate experimental data to bridge the gap between bench-scale work on geochemical reactions and kilometer-scale simulations of GCS in the real world. Central to the proposed multiscale study are two novel high-pressure experimental test beds: a core-scale (cm-scale) vessel to study reaction and flow in caprock specimens (at Princeton), and a large-scale (6 m) pressurized column in which vertical flow of CO2 will be observed in sedimentary media (at the University of Virginia (UVA)). This approach will integrate experimental observation with two key tools for observation and inference: (1) a suite of lab- and synchrotron-based imaging methods to elucidate and quantify mineral reactions and alterations in pores/fractures (at Brookhaven National Lab (BNL)), and (2) reactive transport modeling to infer reaction rates, build predictive capacity, and conduct numerical experiments. The work is targeted to provide new insight critical to understanding the processes that will ultimately determine the viability of GCS. These processes are poorly understood because it is challenging to study reactions and two-phase flow in an integrated way, under high-pressure conditions, over realistic length scales. Reactions in heterogeneous media are best observed at small spatial scales (nm to μm), while flow is best observed over large scales (m to km). This project will elucidate the interrelation of these processes and provide answers to many of the persistent questions in the field such as: What are the conditions that lead to erosion or self-sealing of caprock flow paths? How do geochemical alterations of mineral surfaces alter CO2 flow? Will long-range buoyant CO2 flow be accelerated or decelerated by complexities in capillarity, viscosity, solubility, and Joule-Thomson cooling? These questions cannot be answered effectively by any single discipline. The project interdisciplinary team combines the expertise of an environmental engineer and expert in high-pressure fluid phase behavior (AFC), a geoenvironmental engineer with over a decade of experience in GCS research (CAP) and a geochemist with over 15 years of experience in advanced x-ray imaging techniques (JPF). This research will achieve broader impacts by identifying critical factors that determine the safe and effective sequestration of CO2 in deep geological reservoirs. The work will provide critical inputs to the effort of the United States to achieve the 2010 Presidential directive of overcoming the barriers to the widespread deployment of CCS within ten years. Furthermore, the experimental test beds constitute an investment in long-term study of CO2 flow and reaction in porous and fractured media. Lessons learned from these experiments can be applied to the design of larger facilities currently under development. The research also represents an effort to introduce global environmental change and carbon-neutral energy into the curricula at UVa and Princeton, and to use Brookhaven?s InSync outreach program to enable high school students to have remote access to experimental time at a synchrotron-based x-ray imaging facility.
1134397 Clarens/1133849 Peters地质碳封存(GCS)可能在近期提供碳中性能源的努力中发挥重要作用,尽管尚未明确证明注入深层地质层的CO2将留在原地。该项目汇集了一个跨学科的伙伴关系,研究驱动或抑制CO2通过地层盖层泄漏的条件,以及CO2通过盖层和多孔介质的浮力驱动运输。这一综合和多学科的努力将产生实验数据,以弥合地球化学反应的实验室规模工作与真实的世界中GCS的更大规模模拟之间的差距。 拟议的多尺度研究的核心是两个新的高压实验测试床:一个核心规模(厘米级)容器,研究反应和流动盖层标本(在普林斯顿),和一个大规模(6米)加压柱,其中垂直流动的CO2将在沉积介质中观察(在弗吉尼亚大学(UVA))。这种方法将实验观察与两个关键的观察和推断工具相结合:(1)一套基于实验室和同步加速器的成像方法,用于阐明和量化孔隙/裂缝中的矿物反应和变化(在布鲁克海文国家实验室(BNL)),以及(2)反应传输模型,以推断反应速率,建立预测能力,并进行数值实验。 这项工作的目标是提供新的见解至关重要的理解的过程,将最终决定全球控制系统的可行性。人们对这些过程知之甚少,因为在高压条件下,在现实的长度尺度上以综合的方式研究反应和两相流是具有挑战性的。在非均匀介质中的反应最好在小空间尺度(nm到#956;m)下观察,而流动最好在大尺度(m到km)下观察。该项目将阐明这些过程的相互关系,并提供答案,在该领域的许多长期存在的问题,如:什么是导致盖层流动路径的侵蚀或自我封闭的条件?矿物表面的地球化学变化如何改变CO2流动?毛细作用、粘度、溶解度和焦耳-汤姆逊冷却的复杂性会加速或减速长距离浮力CO2流动吗?这些问题不能由任何单一的学科有效地回答。该项目跨学科团队结合了环境工程师和高压流体相行为(AFC)专家的专业知识,一位在GCS研究(CAP)方面拥有十多年经验的地质环境工程师和一位在先进X射线成像技术(JPF)方面拥有15年经验的地球化学家。 这项研究将通过确定决定深层地质储层中二氧化碳安全有效封存的关键因素来实现更广泛的影响。这项工作将为美国实现2010年总统指示的努力提供关键投入,该指示要求在十年内克服CCS广泛部署的障碍。此外,实验测试床构成了对多孔和裂缝介质中CO2流动和反应的长期研究的投资。从这些实验中吸取的经验教训可应用于目前正在开发的大型设施的设计。 这项研究还代表了一项努力,将全球环境变化和碳中性能源引入弗吉尼亚大学和普林斯顿大学的课程,并使用布鲁克海文?的InSync外展计划,使高中学生能够远程访问实验时间在同步加速器为基础的X射线成像设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andres Clarens其他文献
Andres Clarens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andres Clarens', 18)}}的其他基金
Characterizing the reactivity and industrial ecology of pseudowollastonite to enable highperformance building materials from waste streams
表征拟硅灰石的反应性和工业生态,以从废物流中获得高性能建筑材料
- 批准号:
1805075 - 财政年份:2018
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
CAREER: Understanding the Physiocochemical and Systems-Level Processes that Would Enable Sustainable CO2 Sequestration in Shales
职业:了解可实现页岩可持续二氧化碳封存的物理化学和系统级过程
- 批准号:
1254839 - 财政年份:2013
- 资助金额:
$ 44.61万 - 项目类别:
Continuing Grant
Gas Expanded Lubricants: Smart Fluids for Improving Efficiency of Wind Turbines
气体膨胀润滑剂:提高风力涡轮机效率的智能流体
- 批准号:
0967915 - 财政年份:2010
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
相似海外基金
IDR/Collaborative Research: Characterizing Uncertainty in the Motion of Volcanic Plumes Advected by Wind Fields
IDR/合作研究:表征风场平流火山羽流运动的不确定性
- 批准号:
1131074 - 财政年份:2011
- 资助金额:
$ 44.61万 - 项目类别:
Continuing Grant
IDR-Collaborative Research: The impact of green infrastructure on urban microclimate and energy use
IDR-合作研究:绿色基础设施对城市微气候和能源使用的影响
- 批准号:
1134580 - 财政年份:2011
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
IDR/Collaborative Research: Characterizing Uncertainty in the Motion of Volcanic Plumes Advected by Wind Fields
IDR/合作研究:表征风场平流火山羽流运动的不确定性
- 批准号:
1131799 - 财政年份:2011
- 资助金额:
$ 44.61万 - 项目类别:
Continuing Grant
IDR: Collaborative Research: Novel Photonic Materials and Devices based on Non-Hermitian Optics
IDR:合作研究:基于非厄米光学的新型光子材料和器件
- 批准号:
1128462 - 财政年份:2011
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
IDR: Collaborative Research: Novel Photonic Materials and Devices based on Non-Hermitian Optics
IDR:合作研究:基于非厄米光学的新型光子材料和器件
- 批准号:
1128520 - 财政年份:2011
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
IDR: Collaborative Research: Novel Photonic Materials and Devices based on Non-Hermitian Optics
IDR:合作研究:基于非厄米光学的新型光子材料和器件
- 批准号:
1128593 - 财政年份:2011
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
IDR: Collaborative Research: Novel Photonic Materials and Devices based on Non-Hermitian Optics
IDR:合作研究:基于非厄米光学的新型光子材料和器件
- 批准号:
1128542 - 财政年份:2011
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
IDR/Collaborative Research: Experimental and Computational Foundations for Nonlinear Pattern Formation in the Deposition of Elastic Rods
IDR/合作研究:弹性棒沉积中非线性图案形成的实验和计算基础
- 批准号:
1129894 - 财政年份:2011
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
IDR: Collaborative Research: A Partnership for Multiscale Experimental Study of CO2 Leakage and Vertical Flow in Geologic Carbon Sequestration
IDR:合作研究:地质碳封存中二氧化碳泄漏和垂直流多尺度实验研究的伙伴关系
- 批准号:
1133849 - 财政年份:2011
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
IDR-Collaborative Research: The impact of green infrastructure on urban microclimate and energy use
IDR-合作研究:绿色基础设施对城市微气候和能源使用的影响
- 批准号:
1133590 - 财政年份:2011
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant