Thermally Stable Complex Redox Materials for Hydrogen Generation in Thermochemical Water-Splitting Process
用于热化学水分解过程中制氢的热稳定复合氧化还原材料
基本信息
- 批准号:1134570
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Shende, Rajesh V. Institution: South Dakota School of Mines and TechnologyProposal Number: 1134570Title: Thermally Stable Complex Redox Materials for Hydrogen Generation in Themochemical Water-Splitting ProcessWorld future energy demands must be fulfilled, at least in part, by sustainable energy resources. Energy from the sun can be harnessed for the production of hydrogen such as a new high temperature thermochemical water-splitting technology for hydrogen production, which is a promising green technology involving a cyclic operation of a low-temperature water-splitting step and a high temperature regeneration step using redox materials. Because of the cyclic nature of the process, the redox materials undergo thermal fatigue leading to decrease in surface area due to grain growth or sintering and consequently, steady hydrogen production levels are not realized. In order for this technology to be cost-competitive, hydrogen production from superheated steam generated in a solar concentrator or in a nuclear plant needs to be demonstrated in hundreds of thermochemical cycles, which poses a great challenge for the scientists and reaction engineering professionals. A three-year program is planned to investigate hydrogen generation by a high-temperature water-splitting in multiple thermochemical cycles using thermally stabilized morphologies of redox materials. These materials will be synthesized by the sol-gel and self-propagation high temperature synthesis (SHS) methods coupled with microwave processing leading to different morphologies, for instance, the core-shell or segregated grain boundaries with YSZ (yttria-stabilized zirconia). Among redox materials, as ferrites with spinel, wustite and their combinations are known to be effective for thermochemical water-splitting, the PIs plan to synthesize these materials with thermally stable morphologies, which include MFe2O4, M1xM2yFe2O4, and M1xM2yM3zFe1-x-y-zO (where M, M1, M2, and M3 can be Ni, Zn, Sn, Mn and Li) and investigate hydrogen production in a packed-bed reactor and kinetics and transport properties in multiple thermochemical cycles with a view to achieving steady hydrogen levels. Both investigators have experience with the synthesis of ferrites and hydrogen production from the thermochemical water-splitting process. The fully instrumented reactor set-up in the investigators? laboratory is already built and tested. All necessary characterization instruments are available at SDSM&T. The intellectual merit of this project is in the area of hydrogen generation by high temperature water-splitting in multiple thermochemical cycles using thermally stabilized novel redox materials. This knowledge will be enriched by better understanding of the microstructural stability of different morphologies of in-house synthesized redox materials under thermal fatigue and kinetics and transport processes for hydrogen generation. The experimental studies should enhance the knowledge of the physical and chemical processes involved in the thermal stabilization of redox materials? morphologies and reaction engineering aspects leading to stable hydrogen production levels in hundreds of thermochemical cycles without deterioration of complex ferrites. Broader impacts: Both investigators have been actively involved in promoting research experience for undergraduate students by supporting students from SDSM&T and NSF-REU program. A significant effort will be on education of graduate students in both MS and PhD programs in chemical and biological engineering at SDSM&T. Results generated from the research will be disseminated via publications in peer-reviewed journals and presentations at national and international conferences. Students involved in this research program will have hands-on experience in the areas of sustainable energy, high temperature redox materials and reaction engineering aspects of hydrogen production. The investigators plan to enhance outreach activity in this area to Native Americans, middle and high school students and teachers.
主要研究者:Shende,Rajesh V.机构:南达科他州矿业与技术学院提案编号:1134570标题:热稳定复合氧化还原材料用于热化学水分解过程中的氢气生成世界未来的能源需求必须至少部分地由可持续能源资源来满足。来自太阳的能量可用于生产氢,例如用于生产氢的新的高温热化学水裂解技术,其是一种有前景的绿色技术,涉及使用氧化还原材料的低温水裂解步骤和高温再生步骤的循环操作。由于该过程的循环性质,氧化还原材料经历热疲劳,导致表面积由于晶粒生长或烧结而减小,因此,不能实现稳定的氢气产生水平。为了使这项技术具有成本竞争力,利用太阳能集中器或核电站产生的过热蒸汽制氢需要在数百个热化学循环中进行论证,这对科学家和反应工程专业人员提出了巨大的挑战。一个为期三年的计划,计划调查氢气的生产高温水裂解在多个热化学循环使用热稳定形态的氧化还原材料。这些材料将通过溶胶-凝胶和自蔓延高温合成(SHS)方法与微波处理相结合来合成,从而导致不同的形貌,例如,核-壳或与YSZ(氧化钇稳定的氧化锆)分离的晶界。在氧化还原材料中,由于已知具有尖晶石的铁氧体、方铁矿及其组合对于热化学水分解是有效的,PI计划合成具有热稳定形貌的这些材料,包括MFe 2 O 4、M1 xM 2 yFe 2 O 4和M1 xM 2 yM 3 zFe 1-x-y-zO(其中M、M1、M2和M3可以是Ni、Zn、Sn,Mn和Li),并研究在填充的-床反应器和多个热化学循环中的动力学和输送性质,以便实现稳定的氢水平。两位研究人员都有从热化学水分解过程中合成铁氧体和制氢的经验。研究人员的全仪表化反应堆装置?实验室已经建成并进行了测试。SDSM T提供所有必要的表征仪器。该项目的智力价值在于使用热稳定的新型氧化还原材料在多个热化学循环中通过高温水裂解制氢。这方面的知识将通过更好地了解内部合成的氧化还原材料在热疲劳和动力学和运输过程中产生氢的不同形态的微观结构稳定性来丰富。实验研究应加强对氧化还原材料热稳定过程中所涉及的物理和化学过程的认识。形态和反应工程方面,导致在数百个热化学循环中稳定的氢生产水平,而不会使复杂的铁氧体劣化。更广泛的影响:两位研究人员都积极参与促进本科生的研究经验,支持学生从SDSM& T和NSF-REU计划。SDSM T将在化学和生物工程的硕士和博士课程中对研究生进行重大教育。研究结果将通过在同行评审期刊上发表文章以及在国家和国际会议上发表演讲来传播。参与该研究计划的学生将在可持续能源,高温氧化还原材料和制氢反应工程方面拥有实践经验。调查人员计划加强在这一领域的推广活动,以美洲原住民,初中和高中学生和教师。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajesh Shende其他文献
Rajesh Shende的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajesh Shende', 18)}}的其他基金
Collaborative Research: Mechanistic study of mesoporous carbon formation from food waste
合作研究:食物垃圾中介孔碳形成的机理研究
- 批准号:
2305252 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
超α-stable过程及相关过程的大偏差理论
- 批准号:10926110
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
与稳定(Stable)过程有关的极限定理
- 批准号:10901054
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
基于Alpha-stable分布的SAR影像建模与分析方法研究
- 批准号:40871199
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Photo-information analysis of stable and transformative lanthanide complex in cancer cells
癌细胞中稳定和转化的稀土配合物的光信息分析
- 批准号:
23K17925 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Stable isotope systematics in complex carbonates: Decoding geochemical processes and environmental conditions on Earth and other planets
复杂碳酸盐中的稳定同位素系统学:解码地球和其他行星上的地球化学过程和环境条件
- 批准号:
RGPIN-2020-05810 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Integration of microbial, stable isotope, and modeling tools to identify natural and enhanced pollutant bioattenuation processes at complex contaminated sites
整合微生物、稳定同位素和建模工具,以识别复杂污染场地的自然和增强的污染物生物衰减过程
- 批准号:
575243-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants
Stable isotope systematics in complex carbonates: Decoding geochemical processes and environmental conditions on Earth and other planets
复杂碳酸盐中的稳定同位素系统学:解码地球和其他行星上的地球化学过程和环境条件
- 批准号:
RGPIN-2020-05810 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
MRI: Acquisition of an Isotope Ratio Mass Spectrometer for using stable isotopes to study complex ecological systems
MRI:购买同位素比质谱仪,使用稳定同位素研究复杂的生态系统
- 批准号:
2018315 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Stable isotope systematics in complex carbonates: Decoding geochemical processes and environmental conditions on Earth and other planets
复杂碳酸盐中的稳定同位素系统学:解码地球和其他行星上的地球化学过程和环境条件
- 批准号:
RGPIN-2020-05810 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




