EAGER: Estimating Phylogenetic Trees when Character Evolution is neither Independent nor Identically Distributed

EAGER:当性状进化既不独立也不同分布时估计系统发育树

基本信息

  • 批准号:
    1137084
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

The evolutionary tree or phylogeny of a set of species is a tree that explains the history of their evolution from a common ancestor. To estimate this history, scientists make observations about species that are alive today and seek to find a tree that best fits this data. The most common types of observations these days are in the form of biomolecular sequences such as DNA or protein sequences for genes or proteins. These sequences are aligned so that corresponding positions in the given sequences exhibit as much similarity as possible. Each column of the alignment is called a site or a character. In the standard model of evolution each node in the tree has a certain state for the character and transmits this state to its children. However, the state is probabilistically mutated along each edge of the tree. The standard model also assumes that all characters evolve according to identical, independent stochastic processes. Tight bounds are known for the number of characters needed to infer the tree (and mutation probabilities on the edges) under these assumptions. The problem is that these assumptions are not biologically realistic. It is well known that selection pressure operates differently on different sites and that the evolution of one character can be dependent on other characters. Much more sophisticated mathematical analysis is needed to infer the tree and dependence structure under these conditions, and this is precisely the major goal of this project.The problem of reconstructing evolutionary trees is of central importance in biology since evolution is the theory in biology. Computer scientists have made contributions to this field, but the solutions provided by computer scientists so far simplify the problem too much to produce reliable solutions on realistic data. This project aims to take an important step towards making tree inference algorithms more realistic.
一组物种的进化树或进化树是解释它们从共同祖先进化的历史的树。为了估计这段历史,科学家们对今天存活的物种进行了观察,并试图找到一棵最适合这些数据的树。目前最常见的观测类型是生物分子序列,如基因或蛋白质的DNA或蛋白质序列。比对这些序列,使得给定序列中的相应位置表现出尽可能多的相似性。路线的每一列称为一个地点或一个字符。在标准的进化模型中,树中的每个节点都有一个特定的角色状态,并将这个状态传递给它的孩子。然而,状态是概率性地沿着树的每个边沿着突变的。标准模型还假设所有角色都是按照相同的、独立的随机过程进化的。 在这些假设下,推断树所需的字符数(以及边缘上的突变概率)的严格界限是已知的。问题是,这些假设在生物学上并不现实。众所周知,选择压力在不同地点的作用不同,一个性状的进化可能依赖于其他性状。在这些条件下,需要更复杂的数学分析来推断树和依赖结构,而这正是该项目的主要目标。重建进化树的问题在生物学中至关重要,因为进化是生物学的理论。计算机科学家在这一领域做出了贡献,但迄今为止计算机科学家提供的解决方案过于简化了问题,无法在现实数据上产生可靠的解决方案。这个项目的目标是朝着使树推理算法更现实的方向迈出重要的一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sampath Kannan其他文献

Detecting Character Dependencies in Stochastic Models of Evolution
检测随机进化模型中的特征依赖性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deeparnab Chakrabarty;Sampath Kannan;Kevin Tian
  • 通讯作者:
    Kevin Tian
Polyhedral Flows in Hybrid Automata
  • DOI:
    10.1023/b:form.0000026092.11691.96
  • 发表时间:
    2004-05-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Rajeev Alur;Sampath Kannan;Salvatore La Torre
  • 通讯作者:
    Salvatore La Torre
Thresholds and optimal binary comparison search trees
阈值和最佳二元比较搜索树
Best vs. All: Equity and Accuracy of Standardized Test Score Reporting
最佳与全部:标准化考试成绩报告的公平性和准确性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sampath Kannan;Mingzi Niu;Aaron Roth;Rakesh Vohra
  • 通讯作者:
    Rakesh Vohra
Complexity of Problems on Graphs Represented as OBDDs (Extended Abstract)
以 OBDD 表示的图问题的复杂性(扩展摘要)

Sampath Kannan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sampath Kannan', 18)}}的其他基金

AitF: Provenance with Privacy and Reliability in Federated Distributed Systems
AitF:联邦分布式系统中隐私性和可靠性的起源
  • 批准号:
    1733794
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Maximum Likelihood Estimation and Other Probabilistic Algorithms
最大似然估计和其他概率算法
  • 批准号:
    9820885
  • 财政年份:
    1999
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing grant
A Unified Framework for Improving the Reliability of Reactive Systems
提高反应式系统可靠性的统一框架
  • 批准号:
    9619910
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Models, Methods, and Criteria for Phylogeny Construction
系统发育的模型、方法和标准
  • 批准号:
    9612829
  • 财政年份:
    1996
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
New Directions in Program Checking
程序检查的新方向
  • 批准号:
    9108969
  • 财政年份:
    1991
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Evaluating and addressing the impact of COVID-19 restrictions on electronic health records in estimating causal effects
评估和解决 COVID-19 限制对电子健康记录的影响,以估计因果影响
  • 批准号:
    MR/Z503769/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Estimating Risk Measures, with Applications to Finance and Nuclear Safety
评估风险措施,并应用于金融和核安全
  • 批准号:
    2345330
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Extreme weather events caused by climate change: Estimating the prevalence of at-risk workers
气候变化引起的极端天气事件:估计高危工人的患病率
  • 批准号:
    485323
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Operating Grants
Innovative Method for Estimating Flood Flows and Riverbed Topography from Water Surface Video Images Using the Vortex and Wave Principle
利用涡波原理从水面视频图像估算洪水流量和河床地形的创新方法
  • 批准号:
    23K17776
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of method for estimating post-mortem interval using cadaver microbiome analysis
开发利用尸体微生物组分析估计死后间隔的方法
  • 批准号:
    23K16375
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Establishment of a Highly Accurate Direct Observation Method for Estimating Dissolved Gas Loads from Land to Coastal Oceans via Submarine Groundwater Discharge
建立高精度直接观测方法来估算海底地下水排放从陆地到沿海海洋的溶解气体负荷
  • 批准号:
    23K17046
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Marrying into a Tax Bracket: A New Approach to Estimating Tax Elasticities
嫁入税级:估计税收弹性的新方法
  • 批准号:
    2858465
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Methods for Estimating Disease Burden of Seasonal Influenza
估计季节性流感疾病负担的方法
  • 批准号:
    10682150
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Serocalculator: Estimating Incidence Rates from Serological Data
血清计算器:根据血清学数据估算发病率
  • 批准号:
    10658478
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Estimating Mediation and Moderation Effects in HIV Care Continuum Intervention Trials for People who Use Drugs
估计吸毒者艾滋病毒护理连续干预试验中的中介和调节效应
  • 批准号:
    10676648
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了