Models, Methods, and Criteria for Phylogeny Construction

系统发育的模型、方法和标准

基本信息

  • 批准号:
    9612829
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-09-01 至 1998-08-31
  • 项目状态:
    已结题

项目摘要

This Small Grant for Exploratory Research (SGER), jointly funded by the Theory of Computing (TOC) Program, CCR, by Computational Biology Activity, BIR and by the Systemic Biology Program, DEB, addresses problems in the construction of phylogenies or evolutionary trees. The formulation and effective solution of this problem requires a collaborative multidisciplinary effort from biologists, statisticians and computer scientists. The ideal methodology for solving this problem would include the following steps:(a) Observe data on the species that exist today; (b) Identify a biological model (such as the Jukes-Cantor model or Kimura two parameter model); (c) Based on the model from Step (b), design an objective function and efficient optimization methods for this function so that the tree that optimizes this objective function is the tree that best fits the model. Unfortunately, this ideal program is impossible to realize, because of roadblocks at every step: (i) Data is subject to experimental error and to errors due to its interpretation and use in phylogeny construction methods;(ii) It seems difficult to identify a precise biological model for evolution; (iii) Given the stochastic model of evolution, one candidate for the optimizing tree is the ``most likely tree''. Given the uncertainty of what is actually the ``best'' model, a most likely tree under one model should still be a very likely tree under a slightly different model. Demonstrating this has proven to be a very difficult problem. The goals of this SGER proposal include:(1) Modification of the ideal methodology so that Difficulties(i) -- (iii) are removed; (2) Testing of various models using r-RNA and tufA sequence data supplied by a molecular biologist; (3) Using the experimental results, design of general methods for inferring phylogeny;(4) Comparison of these new models with existing models for the data. In addition, one of the goals of this SGER award is to initiate a multidisciplinary effort between the biologists, statisticians, and computer scientists at the University of Pennsylvania.***
这项探索性研究小资助金(SGER)由计算理论(TOC)计划CCR、计算生物学活动BIR和系统生物学计划DEB共同资助,旨在解决构建系统发育或进化树的问题。这一问题的形成和有效解决需要生物学家、统计学家和计算机科学家的多学科协作努力。解决这一问题的理想方法包括以下步骤:(A)观察现有物种的数据;(B)确定生物模型(如Jukes-Cantor模型或Kimura两参数模型);(C)基于步骤(B)中的模型,设计目标函数和该函数的有效优化方法,使优化该目标函数的树是最符合该模型的树。不幸的是,这一理想的计划不可能实现,因为每一步都有障碍:(1)数据容易受到实验错误的影响,并且由于其在系统发育构建方法中的解释和使用而受到错误的影响;(2)似乎很难确定精确的进化生物模型;(3)鉴于进化的随机模型,优化树的一个候选者是“最有可能的树”。鉴于“最佳”模式的不确定性,一种模式下的最有可能的树应该仍然是另一种略有不同的模式下的树。事实证明,要证明这一点是一个非常困难的问题。SGER提案的目标包括:(1)修改理想的方法学,以消除困难(1)--(3)消除困难;(2)使用分子生物学家提供的r-RNA和Tufa序列数据测试各种模型;(3)利用实验结果,设计推断系统发育的一般方法;(4)将这些新模型与现有数据模型进行比较。此外,SGER奖的目标之一是在宾夕法尼亚大学的生物学家、统计学家和计算机科学家之间发起一项多学科的努力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sampath Kannan其他文献

Detecting Character Dependencies in Stochastic Models of Evolution
检测随机进化模型中的特征依赖性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deeparnab Chakrabarty;Sampath Kannan;Kevin Tian
  • 通讯作者:
    Kevin Tian
Polyhedral Flows in Hybrid Automata
  • DOI:
    10.1023/b:form.0000026092.11691.96
  • 发表时间:
    2004-05-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Rajeev Alur;Sampath Kannan;Salvatore La Torre
  • 通讯作者:
    Salvatore La Torre
Thresholds and optimal binary comparison search trees
阈值和最佳二元比较搜索树
Best vs. All: Equity and Accuracy of Standardized Test Score Reporting
最佳与全部:标准化考试成绩报告的公平性和准确性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sampath Kannan;Mingzi Niu;Aaron Roth;Rakesh Vohra
  • 通讯作者:
    Rakesh Vohra
Complexity of Problems on Graphs Represented as OBDDs (Extended Abstract)
以 OBDD 表示的图问题的复杂性(扩展摘要)

Sampath Kannan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sampath Kannan', 18)}}的其他基金

AitF: Provenance with Privacy and Reliability in Federated Distributed Systems
AitF:联邦分布式系统中隐私性和可靠性的起源
  • 批准号:
    1733794
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EAGER: Estimating Phylogenetic Trees when Character Evolution is neither Independent nor Identically Distributed
EAGER:当性状进化既不独立也不同分布时估计系统发育树
  • 批准号:
    1137084
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Maximum Likelihood Estimation and Other Probabilistic Algorithms
最大似然估计和其他概率算法
  • 批准号:
    9820885
  • 财政年份:
    1999
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing grant
A Unified Framework for Improving the Reliability of Reactive Systems
提高反应式系统可靠性的统一框架
  • 批准号:
    9619910
  • 财政年份:
    1997
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
New Directions in Program Checking
程序检查的新方向
  • 批准号:
    9108969
  • 财政年份:
    1991
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Detecting Inappropriate Respondents in Web Surveys by Machine Learning - Deletion Criteria, Correction Methods, and Prevention
通过机器学习检测网络调查中的不当受访者——删除标准、纠正方法和预防
  • 批准号:
    23K02859
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Online Desision Making Methods for Various Problems and Criteria
针对各种问题和标准的在线决策方法
  • 批准号:
    22H03649
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of multiple classification and comparison methods of cells based on information criteria and their applications to Cell Atlas
基于信息标准的细胞多种分类和比较方法的开发及其在Cell Atlas中的应用
  • 批准号:
    19K22894
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Research on efficient LCA methods that enable multi-criteria evaluation
支持多标准评估的高效 LCA 方法研究
  • 批准号:
    19K04733
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Methods for an Efficient Product Development of Drive Components in Consideration of Complete Vehicle Criteria Using the Example of the Exterior Noise
以外部噪声为例,考虑整车标准的驱动部件高效产品开发方法
  • 批准号:
    426490586
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grants
Criteria and methods for evaluation of solid base properties of layered double hydroxides
层状双氢氧化物固体碱性能评价标准和方法
  • 批准号:
    18K18973
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Establishment of diagnostic methods and criteria of fertility by endoscope in repeat breeder cows
重复种牛内镜诊断方法及生育力标准的建立
  • 批准号:
    17K15376
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Aachen Dynamic Optimization Environment (ADE): Modeling and numerical methods for higher-order sensitivity analysis of differential-algebraic equation systems with optimization criteria
亚琛动态优化环境 (ADE):具有优化准则的微分代数方程系统高阶灵敏度分析的建模和数值方法
  • 批准号:
    281932795
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grants
Machine Learning Methods for Multi-criteria Decision Making
多标准决策的机器学习方法
  • 批准号:
    250377-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Development of ship performance prediction methods for environmental regulation and stability criteria
开发环境监管和稳定性标准的船舶性能预测方法
  • 批准号:
    15H02327
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了