EFRI-MKS: Harnessing Intercellular Signaling to Engineer Pattern Formation
EFRI-MKS:利用细胞间信号传导来设计模式形成
基本信息
- 批准号:1137266
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This NSF award by the Office of Emerging Frontiers in Research and Innovation supports a collaboration between investigators at Rice University and the University of Washington to engineer bacterial stem cells to grow and divide into a wide variety of multicellular patterns and structures. In biology, multicellular tissues and organisms arise from undifferentiated stem cells via complex processes of embryogenesis and development. How large numbers of noisy and error-prone biological cells precisely coordinate their actions over space and time remains an open and challenging question. Here the investigators will take an engineering approach to this problem, by constructing a model multicellular "developmental" system in the bacterium E. coli. The genetics of E. coli are well understood and the organism is therefore very amenable to engineering. Moreover, because E. coli does not naturally form patterns, it is a blank slate where any pattern formed can be more easily attributed to the engineered genetic program.This research program combines immediate practical impact with conceptual depth. The proposed work will enable a potentially transformative technology for controlling the growth of tissues and higher order cellular structures through engineered cell-cell communication. The approach incorporates key features of biological pattern formation, such as (i) the use of positional information encoded within gradients of extracellular signals, (ii) intercellular communication, (iii) feedback and signal processing and (iv) epigenetic inheritance of states. The investigators will develop and quantitatively characterize molecular devices for implementing each of these core functionalities and will then modularly combine those elements into increasingly complex pattern-forming circuits. Experimental work will be guided by mathematical modeling and will take advantage of a custom-made programming formalism for specifying desired shapes and patterns. This group of investigators has highly complementary expertise in signal processing, cell-cell signaling, distributed computing and synthetic biology. This will allow the investigators to produce a combined experimental-computational design cycle that will accelerate the rate of progress in this challenging and important research area.This technology will have great scientific, economic and societal impact. The last decade of synthetic biology boasted a series of significant advances in engineering cellular sensing and signal transduction and constructing synthetic DNA at large scale. Harnessing these advances for the engineering of coordinated multicellular behaviors, best exemplified in pattern formation, is now a major goal in the field. This collaborative effort will significantly advance the current state of the art in programmed pattern formation by developing a rigorous framework to engineer a single stem cell to grow and differentiate into any arbitrary pattern. The outcomes of this work will impact developmental biology, tissue engineering, regenerative medicine, metabolic engineering and biomaterials research.This work is tightly integrated with an outreach program that has two main goals. The first goal is to develop an educational program to teach students the interdisciplinary skills necessary to be successful in synthetic biology. To achieve this goal, the PIs are developing a three course curriculum that is coordinated between several departments at Rice University and the University of Washington. The second goal is to increase the participation of women and underrepresented minorities in engineering disciplines. This will be achieved through established outreach programs aimed at high school teachers, incoming freshmen, underrepresented minorities and women. In particular, the PIs will develop new biological teaching tools that take advantage of the visually compelling experimental systems constructed here.
这项由新兴前沿研究和创新办公室颁发的NSF奖项支持莱斯大学和华盛顿大学的研究人员之间的合作,以设计细菌干细胞生长并分裂成各种各样的多细胞模式和结构。在生物学中,多细胞组织和生物体通过胚胎发生和发育的复杂过程由未分化的干细胞产生。大量嘈杂和容易出错的生物细胞如何在空间和时间上精确协调它们的行动仍然是一个开放和具有挑战性的问题。在这里,研究人员将采取一种工程方法来解决这个问题,通过在细菌E.杆菌对E.大肠杆菌是很好理解的,因此该生物体非常适合工程化。 此外,由于E.大肠杆菌不会自然形成模式,它是一个空白的石板,任何形成的模式可以更容易地归因于工程基因程序。拟议的工作将通过工程化的细胞-细胞通信实现一种潜在的变革性技术,用于控制组织和高阶细胞结构的生长。该方法结合了生物模式形成的关键特征,例如(i)使用细胞外信号梯度内编码的位置信息,(ii)细胞间通信,(iii)反馈和信号处理以及(iv)状态的表观遗传。研究人员将开发和定量表征实现这些核心功能的分子器件,然后将这些元件模块化地联合收割机组合成日益复杂的模式形成电路。实验工作将由数学建模指导,并将利用定制的编程形式主义来指定所需的形状和图案。这组研究人员在信号处理、细胞间信号传导、分布式计算和合成生物学方面具有高度互补的专业知识。这将使研究人员能够产生一个结合实验-计算的设计周期,这将加快这一具有挑战性和重要性的研究领域的进展速度。这项技术将产生巨大的科学,经济和社会影响。近十年来,合成生物学在细胞传感和信号转导工程以及大规模合成DNA等方面取得了一系列重大进展。利用这些进展来设计协调的多细胞行为,最好的例子是模式形成,现在是该领域的一个主要目标。这种合作努力将通过开发一个严格的框架来设计单个干细胞以使其生长和分化成任何任意模式,从而显着推进编程模式形成的当前技术水平。这项工作的成果将影响发育生物学、组织工程、再生医学、代谢工程和生物材料研究。这项工作与一个有两个主要目标的外展计划紧密结合。第一个目标是开发一个教育计划,教导学生在合成生物学中取得成功所需的跨学科技能。为了实现这一目标,PI正在开发一个三门课程的课程,这是在赖斯大学和华盛顿大学的几个部门之间的协调。第二个目标是增加妇女和代表性不足的少数民族在工程学科中的参与。这将通过针对高中教师、新生、代表性不足的少数民族和妇女的既定外联方案来实现。特别是,PI将开发新的生物教学工具,利用这里构建的视觉上引人注目的实验系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Tabor其他文献
Jeffrey Tabor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Tabor', 18)}}的其他基金
Optogenetic interrogation of B. subtilis stress-response network dynamics
枯草芽孢杆菌应激反应网络动力学的光遗传学研究
- 批准号:
2204402 - 财政年份:2022
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
CAREER: Engineering Bacterial two Component Sensors to Study the Dynamics of Anaerobic Gut Terminal Electron Acceptors and Microbial Dysbiosis
职业:设计细菌二元传感器来研究厌氧肠道末端电子受体的动力学和微生物失调
- 批准号:
1553317 - 财政年份:2016
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
相似国自然基金
探索纤毛基因MKS1移码突变致人类颅部神经管畸形发生的作用机制
- 批准号:81401207
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Untersuchungen der Ackerschlepperfahrdynamik bei höheren Geschwindigkeiten und Kurvenfahrt anhand eines MKS-Modells
使用 MKS 模型研究农用拖拉机高速行驶和转弯动力学
- 批准号:
5438986 - 财政年份:2005
- 资助金额:
$ 200万 - 项目类别:
Research Grants