Denoising, Decomposition, and Deconvolution of Moment Sequences by Convex Optimization

通过凸优化对矩序列进行去噪、分解和反卷积

基本信息

  • 批准号:
    1139953
  • 负责人:
  • 金额:
    $ 21.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

Recovering signals from incomplete, noisy measurements is one of the foundational problems in signals and systems theory. In a variety of applications, from RADAR to spectroscopy, signals are combinations of a few basic sine waves. But, to extract information from the system, one must first identify the frequencies of these sine waves from a noisy, incomplete collection of acquired samples. Unfortunately, most popular techniques for signal analysis provide few guarantees in the presence of noise and require a great deal of prior knowledge about the structure of the signal to be estimated. This research addresses these problems by applying key insights from contemporary applied mathematics, analyzing signals as part of a unified approach to decompose systems into simple building blocks.Motivated by the investigator's recent work on recovering signals from highly incomplete information, this project revisits these fundamental, algebraic problems in signal processing with a modern perspective based on convex optimization. This research applies the theory of atomic norm minimization to the practical problems of denoising mixtures of moments in signals, systems and controls. This study develops an abstract theory of atomic norm denoising and a general program for computing mean-square-estimation rates. This work focuses on spectrum estimation problems and will be evaluated in terms of the shortcomings of previous subspace-based approaches. Finally, this research program applies the atomic norm framework to Hankel operator problems in control theory, investigating new approaches to open problems in system identification and model-order reduction.
从不完整的、有噪声的测量中恢复信号是信号与系统理论中的基本问题之一。在各种应用中,从雷达到光谱学,信号是几个基本正弦波的组合。但是,为了从系统中提取信息,必须首先从嘈杂的、不完整的采集样本中识别这些正弦波的频率。不幸的是,大多数流行的信号分析技术在存在噪声的情况下提供很少的保证,并且需要关于待估计的信号的结构的大量先验知识。本研究通过应用当代应用数学的关键见解来解决这些问题,将信号分析作为统一方法的一部分,将系统分解为简单的构建块。受研究者最近从高度不完整的信息中恢复信号的工作的启发,本项目以基于凸优化的现代视角重新审视信号处理中的这些基本代数问题。 本研究将原子范数最小化理论应用于信号、系统和控制中矩混合去噪的实际问题。 本研究发展了原子范数去噪的抽象理论和计算均方估计率的通用程序。 这项工作的重点是频谱估计问题,并将在以前的子空间为基础的方法的缺点进行评估。 最后,本研究计划将原子范数框架应用于控制理论中的汉克尔算子问题,研究系统识别和模型降阶中开放问题的新方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Recht其他文献

Re-analysis on the statistical sampling biases of a mask promotion trial in Bangladesh: a statistical replication
  • DOI:
    10.1186/s13063-022-06704-z
  • 发表时间:
    2022-09-15
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Maria Chikina;Wesley Pegden;Benjamin Recht
  • 通讯作者:
    Benjamin Recht
Dimensionality reduction: beyond the Johnson-Lindenstrauss bound
降维:超越 Johnson-Lindenstrauss 界限
Online Control for Adaptive Tapering of Medications
自适应逐渐减量药物的在线控制
Probability of unique integer solution to a system of linear equations
线性方程组唯一整数解的概率
  • DOI:
    10.1016/j.ejor.2011.04.010
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Mangasarian;Benjamin Recht
  • 通讯作者:
    Benjamin Recht
Alterations in Cerebrospinal Fluid Proteins in a Presymptomatic Primary Glioma Model
症状前原发性胶质瘤模型中脑脊液蛋白的变化
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    J. Whitin;T. Jang;M. Merchant;T. Yu;Kenneth Lau;Benjamin Recht;H. Cohen;L. Recht
  • 通讯作者:
    L. Recht

Benjamin Recht的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Recht', 18)}}的其他基金

Collaborative Research: SLES: Bridging offline design and online adaptation in safe learning-enabled systems
协作研究:SLES:在安全的学习系统中桥接离线设计和在线适应
  • 批准号:
    2331881
  • 财政年份:
    2023
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant
CIF:Small:A Systems Approach to Statistics for N-of-1 Experimental Trials
CIF:Small:N-of-1 实验性试验统计的系统方法
  • 批准号:
    2326498
  • 财政年份:
    2023
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant
CAREER: Efficient Atomic Decompositions of Massive Data Sets
职业:海量数据集的高效原子分解
  • 批准号:
    1359814
  • 财政年份:
    2013
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Atomic Decompositions of Massive Data Sets
职业:海量数据集的高效原子分解
  • 批准号:
    1148243
  • 财政年份:
    2012
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
  • 批准号:
    2307195
  • 财政年份:
    2024
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Continuing Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
  • 批准号:
    24K20849
  • 财政年份:
    2024
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
  • 批准号:
    2307197
  • 财政年份:
    2024
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Continuing Grant
Fractional decomposition of graphs and the Nash-Williams conjecture
图的分数式分解和纳什-威廉姆斯猜想
  • 批准号:
    DP240101048
  • 财政年份:
    2024
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Discovery Projects
Gender Gap in Sub-Sahara African Agriculture: A Decomposition Approach for Prioritizing Interventions
撒哈拉以南非洲农业中的性别差距:优先干预措施的分解方法
  • 批准号:
    24K17971
  • 财政年份:
    2024
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
  • 批准号:
    2307196
  • 财政年份:
    2024
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Continuing Grant
Reactive Force Field Design Guided by Energy Decomposition Analysis
能量分解分析引导的反作用力场设计
  • 批准号:
    2313791
  • 财政年份:
    2023
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Continuing Grant
Model-Based and Design-Based Approaches to Longitudinal Causal Decomposition Analysis
基于模型和设计的纵向因果分解分析方法
  • 批准号:
    2243119
  • 财政年份:
    2023
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant
Development of an electrically heated wire catalyst for highly efficient decomposition of ethylene with the aim of keeping the freshness of agricultural products
开发高效分解乙烯的电加热丝催化剂,以保持农产品的新鲜度
  • 批准号:
    23K05465
  • 财政年份:
    2023
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Photo-thermal ammonia decomposition
光热氨分解
  • 批准号:
    DE230100789
  • 财政年份:
    2023
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了