CAREER: Efficient Atomic Decompositions of Massive Data Sets
职业:海量数据集的高效原子分解
基本信息
- 批准号:1148243
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2013-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scientists and Engineers often struggle to deduce the state or structure of a system from partial, noisy measurements. The corresponding problems are ill-posed because there are fewer measurements available than the number of parameters they would like to estimate. In practice, however, many interesting signals or models contain considerably fewer degrees than the apparent number of parameters: a small number of genes may constitute the signature of a disease, very few parameters may specify the correlation structure of a time series, or a sparse collection of geometric constraints may determine a molecular configuration. Discovering, leveraging, or recognizing such low-dimensional structure plays an important role in posing inverse problems well. This project pursues a unified approach to transform notions of simplicity and latent low-dimensionality into convex penalty functions. The investigators focus on a theoretically sound suite of data analysis algorithms designed to decompose complex signals into sums of a small number of simple atoms. The work first catalogs the objects and structures that can be recovered from a small number of measurements using atomic decomposition algorithms, in order to show that many structures of significant scientific and technological interest need only be probed a few times to extract complete and accurate knowledge. Second, the project explores a range of practically useful implementations of atomic decomposition algorithms for data recovery, enabling efficient solutions of large-scale problems with guaranteed success. Finally, practical implementation in a diverse set of applications, including web-scale data analysis, high-throughput biology, and experimental physics, continually motivate and refine this mathematical research program.
科学家和工程师经常努力从部分的、嘈杂的测量中推断出系统的状态或结构。 相应的问题是不适定的,因为可用的测量值比他们想要估计的参数数量少。然而,在实践中,许多有趣的信号或模型包含的度比参数的表观数量少得多:少量的基因可能构成疾病的特征,非常少的参数可能指定时间序列的相关结构,或者稀疏的几何约束集合可能决定分子构型。发现、利用或识别这种低维结构在很好地提出反问题中起着重要作用。该项目追求一种统一的方法,将简单性和潜在低维的概念转化为凸罚函数。研究人员专注于一套理论上合理的数据分析算法,旨在将复杂信号分解为少量简单原子的总和。 这项工作首先使用原子分解算法对可以从少量测量中恢复的对象和结构进行编目,以表明许多具有重大科学和技术意义的结构只需要探测几次就可以提取完整和准确的知识。其次,该项目探索了一系列实用的原子分解算法实现,用于数据恢复,从而确保成功地有效解决大规模问题。最后,在各种应用程序中的实际实施,包括网络规模的数据分析,高通量生物学和实验物理学,不断激励和完善这个数学研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Recht其他文献
Re-analysis on the statistical sampling biases of a mask promotion trial in Bangladesh: a statistical replication
- DOI:
10.1186/s13063-022-06704-z - 发表时间:
2022-09-15 - 期刊:
- 影响因子:2.000
- 作者:
Maria Chikina;Wesley Pegden;Benjamin Recht - 通讯作者:
Benjamin Recht
Dimensionality reduction: beyond the Johnson-Lindenstrauss bound
降维:超越 Johnson-Lindenstrauss 界限
- DOI:
10.1137/1.9781611973082.68 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Y. Bartal;Benjamin Recht;L. Schulman - 通讯作者:
L. Schulman
Online Control for Adaptive Tapering of Medications
自适应逐渐减量药物的在线控制
- DOI:
10.1109/cdc49753.2023.10384168 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Paula Gradu;Benjamin Recht - 通讯作者:
Benjamin Recht
Probability of unique integer solution to a system of linear equations
线性方程组唯一整数解的概率
- DOI:
10.1016/j.ejor.2011.04.010 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
O. Mangasarian;Benjamin Recht - 通讯作者:
Benjamin Recht
Alterations in Cerebrospinal Fluid Proteins in a Presymptomatic Primary Glioma Model
症状前原发性胶质瘤模型中脑脊液蛋白的变化
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3.7
- 作者:
J. Whitin;T. Jang;M. Merchant;T. Yu;Kenneth Lau;Benjamin Recht;H. Cohen;L. Recht - 通讯作者:
L. Recht
Benjamin Recht的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Recht', 18)}}的其他基金
Collaborative Research: SLES: Bridging offline design and online adaptation in safe learning-enabled systems
协作研究:SLES:在安全的学习系统中桥接离线设计和在线适应
- 批准号:
2331881 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CIF:Small:A Systems Approach to Statistics for N-of-1 Experimental Trials
CIF:Small:N-of-1 实验性试验统计的系统方法
- 批准号:
2326498 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Efficient Atomic Decompositions of Massive Data Sets
职业:海量数据集的高效原子分解
- 批准号:
1359814 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Denoising, Decomposition, and Deconvolution of Moment Sequences by Convex Optimization
通过凸优化对矩序列进行去噪、分解和反卷积
- 批准号:
1139953 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
An Atomic Level Understanding of Optimal Characteristics of TiO2 Protection Layers and Photoelectrode/TiO2 Interfaces for Efficient and Stable Solar Fuel Production
从原子水平了解 TiO2 保护层和光电极/TiO2 界面的最佳特性,以实现高效、稳定的太阳能燃料生产
- 批准号:
2350199 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
- 批准号:
2225900 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Generation of highly efficient near-infrared laser sustained plasma using atomic line absorption
利用原子线吸收产生高效近红外激光持续等离子体
- 批准号:
23H01602 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
- 批准号:
2225896 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Atomic Efficient Catalytic Technology for Sustainable Chemical and Fuel Syntheses Enabled by Active Site Coupling and Kinetic Property Tuning
通过活性位点耦合和动力学特性调节实现可持续化学和燃料合成的原子效率催化技术
- 批准号:
RGPIN-2018-06603 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Atomic Efficient Catalytic Technology for Sustainable Chemical and Fuel Syntheses Enabled by Active Site Coupling and Kinetic Property Tuning
通过活性位点耦合和动力学特性调节实现可持续化学和燃料合成的原子效率催化技术
- 批准号:
RGPIN-2018-06603 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Fundamental Studies of Carrier Selective Passivating Contacts for Efficient Photovoltaic Devices using Laser Processing and Atomic Resolution Interfaces
合作研究:利用激光加工和原子分辨率接口对高效光伏器件的载流子选择性钝化接触进行基础研究
- 批准号:
2005098 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Atomic Efficient Catalytic Technology for Sustainable Chemical and Fuel Syntheses Enabled by Active Site Coupling and Kinetic Property Tuning
通过活性位点耦合和动力学特性调节实现可持续化学和燃料合成的原子效率催化技术
- 批准号:
RGPIN-2018-06603 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Fundamental Studies of Carrier Selective Passivating Contacts for Efficient Photovoltaic Devices using Laser Processing and Atomic Resolution Interfaces
合作研究:利用激光加工和原子分辨率接口对高效光伏器件的载流子选择性钝化接触进行基础研究
- 批准号:
2005057 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Atomic Efficient Catalytic Technology for Sustainable Chemical and Fuel Syntheses Enabled by Active Site Coupling and Kinetic Property Tuning
通过活性位点耦合和动力学特性调节实现可持续化学和燃料合成的原子效率催化技术
- 批准号:
RGPIN-2018-06603 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual