Collaborative Research: Novel interdisciplinary flume experiments to investigate the role of the hyporheic zone in greenhouse gas generation

合作研究:新颖的跨学科水槽实验研究潜流带在温室气体产生中的作用

基本信息

  • 批准号:
    1141690
  • 负责人:
  • 金额:
    $ 24.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

Collaborative Research: Novel interdisciplinary flume experiments to investigate the role of the hyporheic zone in greenhouse gas generationDaniele Tonina, University of Idaho Kevin Feris and Shawn Benner, Boise State UniversityThe hyporheic zone is the band of saturated sediment surrounding the stream, where stream waters mix with pore-water. This zone plays an important role in the nitrogen cycle, which has been radically altered by anthropogenic food and energy production. Furthermore, this zone may be a significant source of the potent greenhouse gas nitrous oxide (N2O), potentially emitting for up to 0.7 Tg y-1, equivalent to 10% of global anthropogenic N2O emissions. While the degree of hyporheic exchange is strongly influenced by stream flow and streambed topography, the relationship between those physical processes and the resulting microbially-mediated geochemical reactions leading to N2O generation and release remains poorly understood. The goal of this interdisciplinary research is to understand, quantify, and parameterize the influence of streambed hydraulics and morphology on the emission of N2O from the hyporheic zone. The generation of N2O via denitrification primarily occurs within the streambed sediments where the catalyzing microbial community is present. Therefore, the mass transport of oxygen, nitrates, ammonium and N2O by hyporheic flow strongly influences reaction rates, residence times, and subsequent N2O production. By extension, stream flow and channel morphology presumably control, and may be effective predictors of, N2O generation rates. However, a number of important in-situ processes remain poorly understood. For example, the amount of reactive nitrogen converted to N2O versus N2 is quite small (0-6%) but highly uncertain, due in part to an incomplete understanding of the genetic composition of the dominant microbial community and the hydrologic factors affecting their distribution and activity. Additionally, controls on the contribution of in-situ reactive nitrogen generation vs. that delivered by the stream are not easily determined in natural systems. Indeed, the inherent spatiotemporal complexity of natural systems limits the strength of traditional observational approaches and precludes explicit expression of these interactions in predictive mathematical models. To overcome limitations of traditional observational field approaches, this research will use a series of manipulative large-scale flume experiments. Large-scale flume experiments will provide unprecedented control while maintaining intrinsically important variables such as a realistic microbial community, water composition, stream flow, and channel structure. This research will develop new understanding of the fundamental interaction among surface-subsurface water exchange, nitrogen transformation and N2O emissions from the hyporheic zone and ultimately from streams. It will explain the role of the hyporheic zone as a biochemical transformation zone by coupling hyporheic hydraulics to biochemical reactions, through numerical-analytical models and flume experiments. Results from this work will act as building blocks for modeling N2O emissions from streams at the watershed scale. Thus, this first stage of controlled manipulative experimentation is essential in advancing our knowledge of water resources at the large scale.
合作研究:新的跨学科水槽实验,以调查在温室气体生成中的作用的潜流区Daniele Tonina,爱达荷州大学Kevin Feris和Shawn Benner,博伊西州立大学潜流区是饱和的沉积物带周围的流,流沃茨与孔隙水混合。这一地带在氮循环中起着重要作用,而人类的食物和能源生产已经从根本上改变了氮循环。此外,这一区域可能是一个重要的潜在温室气体一氧化二氮(N2 O)的来源,排放量高达0.7 Tg y-1,相当于全球人为N2 O排放量的10%。虽然潜流交换的程度受到水流和河床地形的强烈影响,但这些物理过程与导致N2 O生成和释放的微生物介导的地球化学反应之间的关系仍然知之甚少。这项跨学科研究的目标是了解,量化和参数化的河床水力学和形态的影响,从潜流区的N2 O排放。通过反硝化作用产生的N2 O主要发生在河床沉积物中,其中存在催化微生物群落。 因此,氧,硝酸盐,铵和N2 O的传质由hyporheic流强烈影响反应速率,停留时间,和随后的N2 O生产。推而广之,水流和通道形态大概控制,并可能是有效的预测,N2 O的生成率。然而,对一些重要的原地过程仍然知之甚少。例如,相对于N2,转化为N2 O的活性氮的量相当小(0-6%),但高度不确定,部分原因是对占优势的微生物群落的遗传组成和影响其分布和活性的水文因素的不完全理解。此外,在自然系统中不易确定对原位活性氮生成与由水流输送的贡献的控制。事实上,自然系统固有的时空复杂性限制了传统观测方法的优势,并排除了在预测数学模型中明确表达这些相互作用。为了克服传统观测方法的局限性,本研究将采用一系列可操作的大型水槽实验。大规模水槽实验将提供前所未有的控制,同时保持固有的重要变量,如现实的微生物群落,水的成分,水流和通道结构。这项研究将开发新的理解之间的基本相互作用的地表-地下水交换,氮转化和一氧化二氮的排放从潜流区,并最终从流。它将通过数值分析模型和水槽实验,将潜流水力学与生物化学反应相结合,解释潜流区作为生物化学转化区的作用。从这项工作的结果将作为积木模拟N2 O排放流在流域尺度。因此,这第一阶段的控制操作实验是必不可少的,在推进我们的水资源知识在大规模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniele Tonina其他文献

The role of water management and river morphology on stranding pool formation
  • DOI:
    10.1016/j.ecoleng.2023.107101
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rohan Benjankar;Dmitri Vidergar;Daniele Tonina;Qiuwen Chen
  • 通讯作者:
    Qiuwen Chen
A large flood resets riverine morphology, improves connectivity and enhances habitats of a regulated river
一场大洪水重置了河流形态,改善了连通性,并增强了受调节河流的栖息地。
  • DOI:
    10.1016/j.scitotenv.2024.170717
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Jhoselyn Milagros Aramburú-Paucar;Francisco Martínez-Capel;Carlos Antonio Puig-Mengual;Rafael Muñoz-Mas;Andrea Bertagnoli;Daniele Tonina
  • 通讯作者:
    Daniele Tonina
Unveiling surface-subsurface flow interactions of a salmon redd
揭示鲑鱼产卵场地表-地下水流相互作用
  • DOI:
    10.1016/j.advwatres.2025.104947
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Brandon Hilliard;William J. Reeder;Ralph Budwig;Vibhav Durgesh;Bishal Bhattarai;Benjamin T. Martin;Tao Xing;Daniele Tonina
  • 通讯作者:
    Daniele Tonina
Spatial variations of velocity and pressure fields induced by large-scale (single stalk) and small-scale (sediment) roughness elements
大尺度(单茎)和小尺度(沉积物)粗糙度元素引起的速度和压力场的空间变化
  • DOI:
    10.1016/j.advwatres.2025.104954
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Angel Monsalve;William Jeff Reeder;Katherine Adler;Jose Roberto Moreto;Xiaofeng Liu;Daniele Tonina
  • 通讯作者:
    Daniele Tonina
Fluvial pools as reach-scale thermal regulators
河流池作为河段尺度的热调节器
  • DOI:
    10.1016/j.scitotenv.2024.177890
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Andrew W. Tranmer;Andrea Bertagnoli;Aaron Hurst;Caroline Ubing;Joel Sholtes;Daniele Tonina
  • 通讯作者:
    Daniele Tonina

Daniele Tonina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniele Tonina', 18)}}的其他基金

The role of in-channel aquatic vegetation on hyporheic exchange
河道内水生植被对潜流交换的作用
  • 批准号:
    1559348
  • 财政年份:
    2016
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Collaborative Research: How do hydrology and biogeochemistry control carbon flux from headwater streams to the atmosphere?
合作研究:水文学和生物地球化学如何控制从水源流到大气的碳通量?
  • 批准号:
    1417592
  • 财政年份:
    2014
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the role of hyporheic processes on nitrous oxide emissions at the stream network scale
合作研究:了解水流网络规模下流变过程对一氧化二氮排放的作用
  • 批准号:
    1344602
  • 财政年份:
    2014
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
  • 批准号:
    2327797
  • 财政年份:
    2023
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了