EAGER: Using Network Dynamic fMRI for Pre-Surgical Localization of Epileptogenic Foci

EAGER:使用网络动态 fMRI 进行癫痫病灶的术前定位

基本信息

  • 批准号:
    1141995
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

PI: Mujica-Parodi, L., Millett, D. E. and Shaw, S.Proposal Number: 1141995INTELLECTUAL MERITIntractable epilepsy is often treated surgically through the ablation of presumed epileptogenic foci, yet there exists a significant portion of patients for whom foci cannot currently be identified with precision through standard diagnostic techniques (EEG, MRI, PET). Information-theoretic methods adapted from dynamical systems and statistical physics have been applied to EEG to identify seizures, and most recently have been applied to the identification of seizure foci, with some success. However, clinical adoption of these techniques has failed due to EEG's poor spatial resolution. While fMRI has excellent spatial resolution, its hemodynamic time-series are significantly too short and sparse to permit application of most standard information theoretic methods, such as time-delay embedding, fractal dimension, and entropy. The research proposed in this application is designed to establish the clinical utility of computational techniques that combine the sensitivity to circuit dysregulation found in EEG with the spatial resolution found in fMRI, thereby defining a fundamentally new direction for future clinical research. In this application, we will develop techniques for the application of power spectrum scale invariance to fMRI time-series, a method we have previously shown to have utility with respect to the identification and anatomical localization of dysregulation within the paralimbic circuit. These techniques will be tested in the identification of epileptogenic foci, validated by comparison with standard neuropsychological assessment, intracranial monitoring, and/or surgical outcomes.BROADER IMPACTSApproximately three million Americans suffer from epilepsy; it is estimated that fully two thirds of these individuals are unsuccessfully treated by the current state of the art. Successfully managing the disease early is critical, since repeated seizures can cause irreversible brain damage and death. Because the current state of the art is not capable of clearly identifying epileptogenic foci with the high degree of spatial resolution required for successful surgical intervention; if successful, our proposed direction would revolutionize treatment of intractable epilepsy. This proposal is unique in that it is organically interdisciplinary, integrating computational techniques adapted from dynamical systems and statistical physics with direct and immediate clinical applications, and thus fits within the scope of the National Science Foundation's GARDE program and EAGER funding mechanism by addressing the treatment of disability through the novel and transformative development of advanced engineering tools.
PI:Mujica-Parodi,L.,Millett,D. E.和Shaw,S.建议编号:1141995智力MERIT难治性癫痫通常通过消融假定的致癫痫灶进行手术治疗,然而,存在相当大一部分患者,目前通过标准诊断技术(EEG、MRI、PET)不能精确地识别病灶。从动力系统和统计物理学改编的信息理论方法已被应用于EEG以识别癫痫发作,并且最近已被应用于识别癫痫发作病灶,并取得了一些成功。然而,由于EEG的空间分辨率差,这些技术的临床采用失败了。虽然fMRI具有出色的空间分辨率,但其血流动力学时间序列明显太短且稀疏,无法应用大多数标准的信息理论方法,如时间延迟嵌入,分形维数和熵。本申请中提出的研究旨在建立计算技术的临床实用性,该技术将EEG中发现的电路失调的敏感性与fMRI中发现的空间分辨率相结合,从而为未来的临床研究定义了一个全新的方向。在这个应用程序中,我们将开发技术的应用功率谱标度不变性的功能磁共振成像时间序列,我们以前已经证明,具有实用性的识别和解剖定位的边缘回路内的失调的方法。这些技术将在致痫灶的识别中进行测试,通过与标准神经心理学评估、颅内监测和/或手术结果进行比较来验证。据估计,这些个体中有整整三分之二的人没有被现有技术成功地治疗。早期成功地控制疾病是至关重要的,因为反复发作会导致不可逆的脑损伤和死亡。由于目前的最新技术水平不能清楚地识别致痫灶与成功的手术干预所需的高度空间分辨率,如果成功,我们提出的方向将彻底改变治疗难治性癫痫。该提案的独特之处在于它是有机的跨学科,将动力系统和统计物理学的计算技术与直接和即时的临床应用相结合,因此符合美国国家科学基金会的GARDE计划和EAGER资助机制的范围,通过先进工程工具的新颖和变革性发展来解决残疾治疗问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lilianne Mujica-Parodi其他文献

Ketone Diets Can Reverse Some Brain Activities that are Lost in Aging
  • DOI:
    10.1016/j.bpj.2019.11.1639
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Corey Weistuch;Lilianne Mujica-Parodi;Anar Amgalan;Syed Fahad Sultan;Ken A. Dill
  • 通讯作者:
    Ken A. Dill

Lilianne Mujica-Parodi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lilianne Mujica-Parodi', 18)}}的其他基金

NCS-FR: Protecting the Aging Brain: Self-Organizing Networks and Multi-Scale Dynamics under Energy Constraints
NCS-FR:保护衰老的大脑:能量约束下的自组织网络和多尺度动力学
  • 批准号:
    1926781
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NCS-FO: Collaborative Research: Individual variability in human brain connectivity, modeled using multi-scale dynamics under energy constraints
NCS-FO:协作研究:人脑连接的个体差异,在能量限制下使用多尺度动力学建模
  • 批准号:
    1533257
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Using Network Dynamic fMRI for Pre-surgical Localization of Epileptogenic Foci
使用网络动态功能磁共振成像进行癫痫病灶的术前定位
  • 批准号:
    1264440
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
PECASE: Using Control Systems to Quantify Limbic Dysregulation for Neurobiologically-Based Diagnoses of Psychiatric Disabilities
PECASE:使用控制系统量化边缘系统失调,以进行基于神经生物学的精神障碍诊断
  • 批准号:
    0954643
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Education and Outreach using the MicroPulse Differential Absorption Lidars (MPD) and NYSM Profiler Network before, during, and after the 2024 Total Solar Eclipse
在 2024 年日全食之前、期间和之后使用微脉冲差分吸收激光雷达 (MPD) 和 NYSM 剖面仪网络进行教育和推广
  • 批准号:
    2345420
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Decentralizing Trust in Data-Centric In-Network Computing using Collaborative Secure Computation
使用协作安全计算分散对以数据为中心的网络内计算的信任
  • 批准号:
    24K20769
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NeTS: Small: Revisiting Network Algorithmics using the CRAM Model
NeTS:小型:使用 CRAM 模型重新审视网络算法
  • 批准号:
    2333587
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Network Calming - Using Smart Sensors to Improve Water Asset Performance
网络平静 - 使用智能传感器提高水资产绩效
  • 批准号:
    DP230101513
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
A Study on Explainable Recommender Systems using Personal Network
使用个人网络的可解释推荐系统研究
  • 批准号:
    23H03504
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Technology to capture latent relationships using network structure and its applications
利用网络结构捕获潜在关系的技术及其应用
  • 批准号:
    23K01632
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Using a multilayer plant-pollinator and fruit-frugivore network along a defaunation gradient to understand the combined influence of mutualisms on forest communities
职业:沿着动物区系丧失梯度使用多层植物传粉者和水果食果动物网络来了解互利共生对森林群落的综合影响
  • 批准号:
    2335783
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Innovative In-Sensor Computing Devices Using Random Network Structure Reservoirs
使用随机网络结构储层的创新传感器内计算设备
  • 批准号:
    23K17864
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The Social-Medical Network: Using a Network Approach to Explore the Integration of Informal and Formal Care Networks of Older Adults
社会医疗网络:利用网络方法探索老年人非正式和正式护理网络的整合
  • 批准号:
    10724756
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Targeting adolescent depression symptoms using network-based real-time fMRI neurofeedback and mindfulness meditation
使用基于网络的实时功能磁共振成像神经反馈和正念冥想针对青少年抑郁症状
  • 批准号:
    10581837
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了