Using Network Dynamic fMRI for Pre-surgical Localization of Epileptogenic Foci

使用网络动态功能磁共振成像进行癫痫病灶的术前定位

基本信息

  • 批准号:
    1264440
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

PI: Mujica-Parodi, LilianneProposal Number: 1264440Intellectual Merit: For this proposal, we will develop a neurobiologically-based instrument to identify seizure foci in epilepsy. Seizures gradually destroy the brain; therefore, early intervention is critical to maximize chances of full recovery. For the roughly one third of all patients whose seizures cannot be managed through medication, the most common treatment option is surgical removal of the brain areas thought to be seizure foci. However, the procedure assumes that foci can be identified with precision.When they cannot be identified through standard techniques in neuroimaging, as in about half of all patients with medication-resistant focal epilepsy, the options are either no treatment or surgical trial and error, both of which can lead to neurodegeneration as severe as the disease itself. Entropic methods adapted from dynamical systems and statistical physics have been applied to EEG to identify seizures, and most recently have been applied to the identification of seizure foci, with some success. However, clinical adoption of these techniques has failed due to EEG's poor spatial resolution and inability to access sub-cortical regions commonly implicated in seizures. FMRI has the three-dimensional whole brain coverage and spatial resolution required for identifying neurosurgical targets. Unfortunately, hemodynamic time-series are typically too short and sparse to permit application of most standard information theoretic methods, and the degree to which fMRI acquisition and processing techniques preserve signal dynamics is a fundamental engineering question that remains unaddressed. The proposed three-year research plan provides for comprehensive optimization, including innovations in acquisition, hardware, software, and analytical techniques, and is comprised of four parts. First, we will assess and improve the fidelity of fMRI dynamics. This includes both instrumentation development of a Dynamic Phantom for fMRI, for the first time permitting quantitative comparison/correction between known "hemodynamic" inputs and signal outputs at each stage of the image processing pipeline, as well as between time-series acquired from the same spatial coordinates using intracranial EEG (the "gold standard"), scalp EEG, and fMRI. Second, in order to aid in identification of network abnormalities, we will derive normative masks to control for stimulus or default-network activation patterns. Third, we will investigate the relationship between abnormalities of signal complexity and network connectivity, the latter of which has critical implications for understanding the etiology of seizure vulnerability at the synaptic level. Finally, we will use support vector machine to develop automated algorithms for identification of putative seizure foci, as confirmed by intracranial electrodes and/or seizure freedom following surgical resection. If successful, our proposed direction would culminate in providing neurosurgeons with a potentially revolutionary advance in surgical treatment of intractable cryptogenic epilepsy, and thus satisfies the mission of the NSF funding mechanism, designed to support "significant advancement of fundamental engineering and scientific knowledge" rather than incremental improvements. This proposal integrates development of computational techniques and instrumentation with direct clinical applications.Broader Impact: In 2007, the National Academy of Science, National Academy of Engineering, andInstitute of Medicine were charged by Congress to form a committee to address the challenges associated with maintaining scientific innovation and economic competitiveness within an increasingly global economy. For this proposal, we will focus on addressing specific recommendations. an action item was to strengthen children's K-12 preparation in science and technology by enhancing the science and engineering education of the science teachers themselves. The action item will be addressed through the development of a hands-on engineering design and innovation curriculum for grades 1-6. This curriculum will be iteratively tested and refined in a socioeconomically-diverse school, disseminated through our website, and will include follow-up NWEA individualized assessment to measure efficacy in improving student STEM performance. By training students in the lab to develop engineering design and innovation in their own research, and then training them to teach teachers and elementary school students the same conceptual tools at a more basic level, we are able to integrate our research and educational goals to the fullest extent possible.
主要研究者:Mujica-Parodi,LilianneProposal Number:1264440智力优点:对于该提案,我们将开发一种基于神经生物学的仪器来识别癫痫的发作病灶。癫痫发作会逐渐破坏大脑;因此,早期干预对于最大限度地提高完全康复的机会至关重要。对于大约三分之一的癫痫发作无法通过药物治疗的患者,最常见的治疗选择是手术切除被认为是癫痫发作病灶的大脑区域。然而,该程序假设可以精确识别病灶,当它们无法通过标准的神经影像学技术识别时,大约一半的耐药性局灶性癫痫患者,选择要么不治疗,要么手术试错,这两种方法都可能导致与疾病本身一样严重的神经退行性变。改编自动力系统和统计物理学的熵方法已应用于EEG以识别癫痫发作,最近已应用于癫痫发作病灶的识别,并取得了一些成功。然而,由于EEG的空间分辨率差并且无法访问通常与癫痫发作有关的皮层下区域,这些技术的临床采用失败了。功能磁共振成像具有识别神经外科目标所需的三维全脑覆盖和空间分辨率。不幸的是,血流动力学时间序列通常太短,稀疏,允许应用最标准的信息理论方法,以及功能磁共振成像采集和处理技术保持信号动态的程度是一个基本的工程问题,仍然没有解决。拟议的三年研究计划提供了全面的优化,包括采购,硬件,软件和分析技术的创新,并由四个部分组成。首先,我们将评估和提高fMRI动态的保真度。这包括用于fMRI的动态体模的仪器开发,首次允许在图像处理管道的每个阶段的已知"血液动力学"输入和信号输出之间以及使用颅内EEG("金标准")、头皮EEG和fMRI从相同空间坐标获取的时间序列之间进行定量比较/校正。其次,为了帮助识别网络异常,我们将推导出规范的掩码来控制刺激或默认网络激活模式。第三,我们将研究信号复杂性和网络连接异常之间的关系,后者对于理解突触水平癫痫发作脆弱性的病因学具有重要意义。最后,我们将使用支持向量机开发自动化算法来识别假定的癫痫灶,如颅内电极和/或手术切除后的癫痫发作自由所证实的。如果成功的话,我们提出的方向将最终为神经外科医生提供一个潜在的革命性进展,在外科治疗难治性隐源性癫痫,从而满足美国国家科学基金会的资助机制,旨在支持"重大进步的基础工程和科学知识",而不是渐进式的改进使命。更广泛的影响:2007年,美国国家科学院、美国国家工程院和美国医学研究所被国会授权成立一个委员会,以应对在日益全球化的经济中保持科学创新和经济竞争力所面临的挑战。对于本提案,我们将侧重于处理具体建议。 行动项目之一是通过加强科学教师本身的科学和工程教育,加强儿童在科学和技术方面的K-12准备。 该行动项目将通过为1 - 6年级制定一个动手工程设计和创新课程来解决。该课程将在社会经济多样化的学校进行反复测试和完善,通过我们的网站传播,并将包括后续的NWEA个性化评估,以衡量提高学生STEM成绩的有效性。 通过在实验室培养学生在自己的研究中开发工程设计和创新,然后培训他们在更基本的层面上向教师和小学生教授相同的概念工具,我们能够尽可能地整合我们的研究和教育目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lilianne Mujica-Parodi其他文献

Ketone Diets Can Reverse Some Brain Activities that are Lost in Aging
  • DOI:
    10.1016/j.bpj.2019.11.1639
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Corey Weistuch;Lilianne Mujica-Parodi;Anar Amgalan;Syed Fahad Sultan;Ken A. Dill
  • 通讯作者:
    Ken A. Dill

Lilianne Mujica-Parodi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lilianne Mujica-Parodi', 18)}}的其他基金

NCS-FR: Protecting the Aging Brain: Self-Organizing Networks and Multi-Scale Dynamics under Energy Constraints
NCS-FR:保护衰老的大脑:能量约束下的自组织网络和多尺度动力学
  • 批准号:
    1926781
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NCS-FO: Collaborative Research: Individual variability in human brain connectivity, modeled using multi-scale dynamics under energy constraints
NCS-FO:协作研究:人脑连接的个体差异,在能量限制下使用多尺度动力学建模
  • 批准号:
    1533257
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Using Network Dynamic fMRI for Pre-Surgical Localization of Epileptogenic Foci
EAGER:使用网络动态 fMRI 进行癫痫病灶的术前定位
  • 批准号:
    1141995
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
PECASE: Using Control Systems to Quantify Limbic Dysregulation for Neurobiologically-Based Diagnoses of Psychiatric Disabilities
PECASE:使用控制系统量化边缘系统失调,以进行基于神经生物学的精神障碍诊断
  • 批准号:
    0954643
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10797940
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10502084
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10707418
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
CAREER: Model-based Analysis of Dynamic Networks using Continuous-time Network Models
职业:使用连续时间网络模型对动态网络进行基于模型的分析
  • 批准号:
    2318751
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Model-based Analysis of Dynamic Networks using Continuous-time Network Models
职业:使用连续时间网络模型对动态网络进行基于模型的分析
  • 批准号:
    2047955
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Dynamic risk assessment of hazardous process operations using the long short-term memory (LSTM) neural network and Bayesian network (BN)
使用长短期记忆(LSTM)神经网络和贝叶斯网络(BN)对危险过程操作进行动态风险评估
  • 批准号:
    547892-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Characterization of Multi-Scale Discrete Fracture Network Systems in Unconventional Reservoirs Using Dynamic Data
使用动态数据表征非常规油藏多尺度离散裂缝网络系统
  • 批准号:
    RGPIN-2017-05779
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Characterization of Multi-Scale Discrete Fracture Network Systems in Unconventional Reservoirs Using Dynamic Data
使用动态数据表征非常规油藏多尺度离散裂缝网络系统
  • 批准号:
    RGPIN-2017-05779
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Directional neural network connectivity in multiple sclerosis pain: a dynamic causal modelling approach using resting-state functional magnetic resonance imaging and magnetoencephalography
多发性硬化症疼痛中的定向神经网络连接:使用静息态功能磁共振成像和脑磁图的动态因果建模方法
  • 批准号:
    441402
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship Programs
Dynamic risk assessment of hazardous process operations using the long short-term memory (LSTM) neural network and Bayesian network (BN)
使用长短期记忆 (LSTM) 神经网络和贝叶斯网络 (BN) 对危险过程操作进行动态风险评估
  • 批准号:
    547892-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了