EAGER: Collaborative Research: Improving the efficiency of Wireless Sensor Networks using principles of Genomic Robustness

EAGER:协作研究:利用基因组稳健性原理提高无线传感器网络的效率

基本信息

  • 批准号:
    1143737
  • 负责人:
  • 金额:
    $ 10.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Organisms adapt to external perturbations through the optimized structure of their gene regulatory networks (GRNs). In the long-term, the state transition network of a GRN converges to a set of attractors that make the organism resilient to removal or functional impairment of genes. In wireless sensor networks (WSN), such attractors refer to a group of sensors serving as sink nodes for packets sent over multiple hops. This project maps such attractor based genomic robustness onto WSNs to infer optimal topologies and routing strategies that mitigate both sensor failure and a noisy wireless channel. This is being achieved by conducting in silico gene ?knock-down? experiments by simulating the functional removal of a gene from sample GRNs, to understand the dynamics of the attractor state space. This information is next used to design WSN topologies and routing protocols that are resilient to network uncertainty, node breakdown and compromise. This project pursues the design of optimal wiring rules between sensors in a robust WSN that guarantees maximum probability of successful packet transmission under a given routing strategy. The guiding principle is to follow nature?s foot-steps in designing simple rules (i.e., routing algorithms) that guarantee maximum efficiency over an optimized WSN topology. It also develops innovative network-science based tools, and provides insights into the interplay of GRNs and WSNs that inspire new designs for engineered systems (i.e. fault-tolerant topologies for WSNs). Validation and testing are accomplished on real life WSN testbeds. Research results will be disseminated through publications, besides allowing for the design of new graduate-level courses.
生物体通过其基因调控网络(GRNs)的优化结构来适应外部扰动。从长远来看,GRN的状态转换网络收敛到一组吸引子,使生物体对基因的去除或功能损伤具有弹性。在无线传感器网络(WSN)中,这样的吸引子是指一组传感器作为汇聚节点,用于多跳发送的数据包。该项目将这种基于吸引子的基因组鲁棒性映射到无线传感器网络上,以推断最佳拓扑结构和路由策略,从而减轻传感器故障和嘈杂的无线信道。这是通过进行计算机基因?击倒?通过模拟从样本GRNs中去除基因的功能来进行实验,以了解吸引子状态空间的动态。这些信息接下来用于设计WSN拓扑和路由协议,这些拓扑和路由协议对网络的不确定性、节点故障和妥协具有弹性。本计画的目的在于设计一个强健的无线传感器网路,以确保在既定的路由策略下,最大化封包成功传输的机率。指导原则是遵循自然?设计简单规则的步骤(即,路由算法),其保证优化的WSN拓扑上的最大效率。它还开发了创新的基于网络科学的工具,并提供了对GRNs和WSNs相互作用的见解,激发了工程系统的新设计(即WSNs的容错拓扑结构)。验证和测试完成真实的生活的无线传感器网络测试床。研究成果将通过出版物传播,并可用于设计新的研究生课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Preetam Ghosh其他文献

Intrinsic and Simplified Complex Network Embedding Model
内在且简化的复杂网络嵌入模型
  • DOI:
    10.1007/978-981-16-0666-3_21
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ahmad F. Al Musawi;Preetam Ghosh
  • 通讯作者:
    Preetam Ghosh
A simplified drift-diffusion model for pandemic propagation (preprint)
大流行传播的简化漂移扩散模型(预印本)
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Bender;A. Ghosh;H. Vakili;Preetam Ghosh;Avik W. Ghosh
  • 通讯作者:
    Avik W. Ghosh
Physics-informed machine learning for automatic model reduction in chemical reaction networks
基于物理的机器学习,用于化学反应网络中的自动模型简化
  • DOI:
    10.1101/2024.03.20.585845
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Pateras;Colin Zhang;Shriya Majumdar;Ayush Pal;Preetam Ghosh
  • 通讯作者:
    Preetam Ghosh
Effects of vesicular membrane composition on amyloid-beta oligomerization
  • DOI:
    10.1016/j.bpj.2021.11.2423
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Jhinuk Saha;Priyankar Bose;Shailendra Dhakal;Preetam Ghosh;Vijay Rangachari
  • 通讯作者:
    Vijay Rangachari
Examining post-pandemic behaviors influencing human mobility trends
检查影响人员流动趋势的大流行后行为

Preetam Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Preetam Ghosh', 18)}}的其他基金

NSF Student Travel Grant for the 2020 IFIP Networking Conference (IFIP NETWORKING)
2020 年 IFIP 网络会议 (IFIP NETWORKING) 的 NSF 学生旅费补助金
  • 批准号:
    2017600
  • 财政年份:
    2020
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of surfactant - amyloid-beta protein interactions during self-assembly
合作研究:自组装过程中表面活性剂 - 淀粉样蛋白 - β 蛋白相互作用的动力学
  • 批准号:
    1802588
  • 财政年份:
    2018
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
CSR: EAGER: Exploring Biological Network Robustness using Bio-Inspired Wireless Sensor Networks: A Novel Paradigm for Systems Research
CSR:EAGER:利用仿生无线传感器网络探索生物网络的鲁棒性:系统研究的新范式
  • 批准号:
    1353111
  • 财政年份:
    2013
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
AF: EAGER: An Algorithmic Framework for Self-Assembly
AF:EAGER:自组装算法框架
  • 批准号:
    1351786
  • 财政年份:
    2013
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
EAGER: Molecular-Level Stochastic Simulation To Predict The Dynamics of Protein Misfolding and Aggregation
EAGER:分子水平随机模拟预测蛋白质错误折叠和聚集的动态
  • 批准号:
    1158608
  • 财政年份:
    2011
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Improving the efficiency of Wireless Sensor Networks using principles of Genomic Robustness
EAGER:协作研究:利用基因组稳健性原理提高无线传感器网络的效率
  • 批准号:
    1049661
  • 财政年份:
    2010
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
EAGER: Molecular-Level Stochastic Simulation To Predict The Dynamics of Protein Misfolding and Aggregation
EAGER:分子水平随机模拟预测蛋白质错误折叠和聚集的动态
  • 批准号:
    1049962
  • 财政年份:
    2010
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了