III: EAGER: Accelerated Filtering of Spatiotemporal Archives Using Reconfigurable Hardware

III:EAGER:使用可重构硬件加速时空档案过滤

基本信息

  • 批准号:
    1144158
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

The wide adoption of GPS and sensor technologies has created many applications that collect and maintain very large repositories of data in the form of trajectories. To better analyze such data, a user can pose complex pattern queries using a high level region-based representation that abstracts trajectories by the temporally ordered sequence of spatial regions (or areas/points of interest) they visited. For example: "find moving objects that first passed by the train station, then by the town center and were always within a mile from the harbor". Temporal and counter constraints, as well as region variables and region hierarchies can be added to create very powerful queries. Similarly, one can formulate join queries that identify pairs of trajectories with similar behavior, etc. While such pattern-based queries are critical in analyzing vast trajectory archives, traditional methods fail to scale due to the large computational effort and size of the data. Adding more resources (i.e., many processors) will not eliminate the bottleneck (each processor still uses multiple clock cycles per operation) and may also create a large communication overhead between the processors. Instead, this project takes a different, high risk-high payoff approach by using reconfigurable hardware, namely, Field Programmable Gate Arrays (FPGAs). FPGAs are code accelerators where a portion of the application is mapped as a circuit on the FPGA; thus they avoid the traditional load/store operations in the datapath that traditional CPUs perform. Such processing has the potential to provide orders of magnitude performance improvement, leading to further discoveries from vast amounts of data. The intellectual merit of this project emanates from the novel solutions needed: efficient FPGA designs to support region variables, time and counter constraints, region hierarchies, as well trajectory joins. If successful, this project has the potential to revolutionize the way queries over large trajectory data archives are processed. There is a broad range of applications (scientific, educational, and economic activities) that will be impacted from the fast processing provided by the FPGA filtering approach. Providing orders of magnitude speed improvement will have a profound effect in these applications. The combination of two distinct technologies (Databases and FPGAs) is an ideal vehicle for training graduate/undergraduate students and for transferring gained experience into relevant courses. For further information see the project web site at the URL: http://www.cs.ucr.edu/~tsotras/fpga/index.html
GPS和传感器技术的广泛采用创造了许多应用程序,这些应用程序以轨迹的形式收集和维护非常大的数据库。为了更好地分析这样的数据,用户可以使用高级的基于区域的表示来提出复杂的模式查询,该表示通过他们访问的空间区域(或感兴趣的区域/点)的时间排序序列来抽象轨迹。例如:“找到首先经过火车站,然后经过市中心,并且总是在离港口一英里范围内的移动物体”。可以添加时间和计数器约束,以及区域变量和区域层次结构,以创建非常强大的查询。类似地,人们可以制定连接查询,识别具有相似行为的轨迹对等。虽然这种基于模式的查询在分析大量轨迹档案中至关重要,但传统方法由于计算量大和数据大小而无法扩展。增加更多的资源(即,许多处理器)将不会消除瓶颈(每个处理器仍然在每个操作中使用多个时钟周期),并且还可能在处理器之间产生大的通信开销。相反,该项目采用了不同的,高风险高回报的方法,通过使用可重构硬件,即现场可编程门阵列(FPGA)。FPGA是代码加速器,其中应用程序的一部分被映射为FPGA上的电路;因此它们避免了传统CPU执行的数据路径中的传统加载/存储操作。这种处理有可能提供数量级的性能改进,从而从大量数据中获得进一步的发现。该项目的智力价值来自于所需的新颖解决方案:有效的FPGA设计,以支持区域变量,时间和计数器约束,区域层次结构以及轨迹连接。如果成功,该项目有可能彻底改变处理大型轨迹数据档案的查询方式。有广泛的应用(科学,教育和经济活动)将受到FPGA滤波方法提供的快速处理的影响。提供数量级的速度改进将在这些应用中产生深远的影响。两种不同技术(数据库和FPGA)的结合是培训研究生/本科生和将获得的经验转移到相关课程的理想工具。欲了解更多信息,请访问该项目网站的URL:http://www.cs.ucr.edu/~tsotras/fpga/index.html

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vassilis Tsotras其他文献

Vassilis Tsotras的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vassilis Tsotras', 18)}}的其他基金

CCRI: ENS: Collaborative Research: Supporting and Sustaining Apache AsterixDB for the CISE Research Community
CCRI:ENS:协作研究:为 CISE 研究社区支持和维护 Apache AsterixDB
  • 批准号:
    1924694
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
III: Small: Discovering Hidden Semantics from Spatio-temporal Sensed Data
III:小:从时空感知数据中发现隐藏语义
  • 批准号:
    1527984
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKM: Collaborative Research: Making Big Data Active: From Petabytes to Megafolks in Milliseconds
BIGDATA:F:DKM:协作研究:使大数据活跃起来:在毫秒内从 PB 级到百万级数据
  • 批准号:
    1447826
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CI-ADDO-NEW: ASTERIX: A Community Software Platform for Big Data Research, Analysis, and Management
CI-ADDO-NEW:ASTERIX:用于大数据研究、分析和管理的社区软件平台
  • 批准号:
    1305253
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
III: Travel Support for U.S.-Based Graduate Students to Attend the 26th IEEE International Conference on Data Engineering (ICDE 2010)
III:为美国研究生参加第 26 届 IEEE 国际数据工程会议 (ICDE 2010) 提供差旅支持
  • 批准号:
    0956600
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
DC: Large: Collaborative Research: ASTERIX: A Highly Scalable Parallel Platform for Semistructured Data Management and Analysis
DC:大型:协作研究:ASTERIX:用于半结构化数据管理和分析的高度可扩展并行平台
  • 批准号:
    0910859
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
III-COR: Collaborative Research: Graceful Evolution and Historical Queries in Information Systems -- a Unified Approach
III-COR:协作研究:信息系统中的优雅进化和历史查询——统一方法
  • 批准号:
    0705916
  • 财政年份:
    2007
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
NeTS-NOSS: Providing Flash Memory Support for Sensor Network Architectures
NeTS-NOSS:为传感器网络架构提供闪存支持
  • 批准号:
    0627191
  • 财政年份:
    2006
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Query Processing Over GIS Objects With Functional Attributes
具有功能属性的 GIS 对象的查询处理
  • 批准号:
    0534781
  • 财政年份:
    2006
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
SGER Collaborative Research: Support for Design of Evolving Information Systems
SGER 协作研究:支持不断发展的信息系统设计
  • 批准号:
    0339032
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: A Genome Wide HDR Enhancement Screen in Maize
EAGER:玉米全基因组 HDR 增强屏幕
  • 批准号:
    2409037
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Creating a Composite EL Nino Record from the Lowland Neotropics
EAGER:创造低地新热带区综合厄尔尼诺记录
  • 批准号:
    2417794
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了