BIGDATA: F: DKM: Collaborative Research: Making Big Data Active: From Petabytes to Megafolks in Milliseconds

BIGDATA:F:DKM:协作研究:使大数据活跃起来:在毫秒内从 PB 级到百万级数据

基本信息

  • 批准号:
    1447826
  • 负责人:
  • 金额:
    $ 71.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

A wealth of digital information is being generated daily through social networks, blogs, online communities, news sources, and mobile applications in an increasingly sensed world. Organizations and researchers recognize that tremendous value and insight can be gained by capturing this emerging data and making it available for querying and analysis. First-generation Big Data management efforts have been passive in nature -- queries, updates, and/or analysis tasks were mainly scaled to handle very large volumes of data. In contrast, this project will develop new techniques for continuously and reliably capturing Big Data collections (arising from social, mobile, Web, and sensed data sources) and will enable timely delivery of the right information to the relevant end users. In short, this project will provide a scalable foundation for moving from Big Passive Data to Big Active Data. Techniques should be developed to enable the accumulation and monitoring of petabytes of data of potential interest to millions of end users; when "interesting" new data appears, it should be delivered to end users in a time frame measured in (100's of) milliseconds. This project will build such an Active Big Data Management system and make it available as open source to the community. Students will be trained in technologies related to Big Active Data management and applications; such training is critical to addressing the information explosion that social media and the mobile Web are driving today. The general-purpose foundation for active information dissemination from Big Data will have broader impacts in areas such as public safety and public health. There are many challenges involved in building a foundation for Big Active Data. On the "data in" side, these include resource management in very large scale, LSM-based storage systems and the provision of a highly available, elastic facility for fast data ingestion. On the "data processing" side, challenges include the parallel evaluation of a large number of declarative data subscriptions over multiple) highly partitioned data sets. Amplifying this challenge is a need to efficiently support spatial, temporal, and similarity predicates in data subscriptions. Big Data also makes result ranking and diversification techniques critical in order for large result sets to be manageable. On the "data out" side, challenges include the reliable and timely dissemination of data of interest to a sometimes-connected subscriber base of unprecedented scale. As a software base, this project will be jump-started by using AsterixDB(http://asterixdb.ics.uci.edu/), an open-source Big Data Management System that supports the scalable storage, searching, and analysis of mass quantities of semi-structured data. For further information see the project web sites at https://www.ics.uci.edu/BigActiveData and http://www.cs.ucr.edu/~tsotras/BigActiveData
在一个日益感知的世界中,每天都有大量的数字信息通过社交网络、博客、在线社区、新闻来源和移动的应用程序生成。组织和研究人员认识到,通过捕获这些新兴数据并使其可用于查询和分析,可以获得巨大的价值和洞察力。第一代大数据管理工作本质上是被动的-查询,更新和/或分析任务主要是为了处理非常大量的数据。相比之下,该项目将开发新技术,用于持续可靠地捕获大数据集合(来自社交,移动的,Web和传感数据源),并将及时向相关最终用户提供正确的信息。简而言之,该项目将为从大被动数据转向大主动数据提供可扩展的基础。应开发技术,以便能够积累和监测数百万最终用户可能感兴趣的PB级数据;当出现“感兴趣的”新数据时,应在以(数百)毫秒为单位的时间范围内将其提供给最终用户。该项目将构建这样一个主动大数据管理系统,并将其作为开源提供给社区。学生将接受与大主动数据管理和应用程序相关的技术培训;这种培训对于解决社交媒体和移动的Web今天推动的信息爆炸至关重要。大数据主动信息传播的通用基础将在公共安全和公共卫生等领域产生更广泛的影响。为大主动数据奠定基础涉及许多挑战。在“数据输入”方面,这些措施包括大规模的资源管理、基于LSM的存储系统,以及为快速数据摄取提供高可用性、弹性的设施。在“数据处理”方面,挑战包括在多个高度分区的数据集上并行评估大量声明性数据订阅。在数据订阅中需要有效地支持空间、时间和相似性谓词,这加剧了这一挑战。大数据还使得结果排名和多样化技术变得至关重要,以便管理大型结果集。在“数据输出”方面,面临的挑战包括可靠和及时地向有时连接的规模空前的用户群传播感兴趣的数据。作为一个软件基础,该项目将通过使用AsterixDB(http://www.xdb.ics.uci.edu/)启动,这是一个开源的大数据管理系统,支持可扩展的存储,搜索和分析大量的半结构化数据。欲了解更多信息,请访问项目网站https://www.ics.uci.edu/BigActiveData和http://www.cs.ucr.edu/~tsotras/BigActiveData

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vassilis Tsotras其他文献

Vassilis Tsotras的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vassilis Tsotras', 18)}}的其他基金

CCRI: ENS: Collaborative Research: Supporting and Sustaining Apache AsterixDB for the CISE Research Community
CCRI:ENS:协作研究:为 CISE 研究社区支持和维护 Apache AsterixDB
  • 批准号:
    1924694
  • 财政年份:
    2019
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
III: Small: Discovering Hidden Semantics from Spatio-temporal Sensed Data
III:小:从时空感知数据中发现隐藏语义
  • 批准号:
    1527984
  • 财政年份:
    2015
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
CI-ADDO-NEW: ASTERIX: A Community Software Platform for Big Data Research, Analysis, and Management
CI-ADDO-NEW:ASTERIX:用于大数据研究、分析和管理的社区软件平台
  • 批准号:
    1305253
  • 财政年份:
    2013
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
III: EAGER: Accelerated Filtering of Spatiotemporal Archives Using Reconfigurable Hardware
III:EAGER:使用可重构硬件加速时空档案过滤
  • 批准号:
    1144158
  • 财政年份:
    2011
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
III: Travel Support for U.S.-Based Graduate Students to Attend the 26th IEEE International Conference on Data Engineering (ICDE 2010)
III:为美国研究生参加第 26 届 IEEE 国际数据工程会议 (ICDE 2010) 提供差旅支持
  • 批准号:
    0956600
  • 财政年份:
    2009
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
DC: Large: Collaborative Research: ASTERIX: A Highly Scalable Parallel Platform for Semistructured Data Management and Analysis
DC:大型:协作研究:ASTERIX:用于半结构化数据管理和分析的高度可扩展并行平台
  • 批准号:
    0910859
  • 财政年份:
    2009
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
III-COR: Collaborative Research: Graceful Evolution and Historical Queries in Information Systems -- a Unified Approach
III-COR:协作研究:信息系统中的优雅进化和历史查询——统一方法
  • 批准号:
    0705916
  • 财政年份:
    2007
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
NeTS-NOSS: Providing Flash Memory Support for Sensor Network Architectures
NeTS-NOSS:为传感器网络架构提供闪存支持
  • 批准号:
    0627191
  • 财政年份:
    2006
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
Query Processing Over GIS Objects With Functional Attributes
具有功能属性的 GIS 对象的查询处理
  • 批准号:
    0534781
  • 财政年份:
    2006
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Continuing Grant
SGER Collaborative Research: Support for Design of Evolving Information Systems
SGER 协作研究:支持不断发展的信息系统设计
  • 批准号:
    0339032
  • 财政年份:
    2003
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant

相似海外基金

BIGDATA: F: DKM: Collaborative Research: PXFS: ParalleX Based Transformative I/O System for Big Data
BIGDATA:F:DKM:协作研究:PXFS:基于 ParalleX 的大数据变革性 I/O 系统
  • 批准号:
    1447650
  • 财政年份:
    2014
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKM: DKA: Big Data Modeling and Analysis with Depth and Scale
BIGDATA:F:DKM:DKA:深度和规模的大数据建模和分析
  • 批准号:
    1447549
  • 财政年份:
    2014
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKM: Addressing the two V's of Veracity and Variety in Big Data
BIGDATA:F:DKM:解决大数据中的准确性和多样性这两个 V
  • 批准号:
    1447795
  • 财政年份:
    2014
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKM: Spectral Analysis and Control of Evolving Large Scale Networks
BIGDATA:F:DKM:不断发展的大规模网络的频谱分析和控制
  • 批准号:
    1447470
  • 财政年份:
    2014
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKM: Collaborative Research: PXFS: ParalleX Based Transformative I/O System for Big Data
BIGDATA:F:DKM:协作研究:PXFS:基于 ParalleX 的大数据变革性 I/O 系统
  • 批准号:
    1447771
  • 财政年份:
    2014
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: CSD: DKM: Theory and Algorithms for Processing Data with Sparse and Multilinear Structure
BIGDATA:F:DKA:CSD:DKM:稀疏和多线性结构数据处理的理论和算法
  • 批准号:
    1447879
  • 财政年份:
    2014
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKM: Collaborative Research: Making Big Data Active: From Petabytes to Megafolks in Milliseconds
BIGDATA:F:DKM:协作研究:使大数据活跃起来:在毫秒内从 PB 级到百万级数据
  • 批准号:
    1447720
  • 财政年份:
    2014
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: DKM: Novel Out-of-core and Parallel Algorithms for Processing Biological Big Data
BIGDATA:F:DKA:DKM:用于处理生物大数据的新型核外并行算法
  • 批准号:
    1447711
  • 财政年份:
    2014
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKM: Plato: A model-based database for compressed spatiotemporal sensor data
BIGDATA:F:DKM:Plato:基于模型的压缩时空传感器数据数据库
  • 批准号:
    1447943
  • 财政年份:
    2014
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKM: Collaborative Research: Scalable Middleware for Managing and Processing Big Data on Next Generation HPC Systems
BIGDATA:F:DKM:协作研究:用于在下一代 HPC 系统上管理和处理大数据的可扩展中间件
  • 批准号:
    1447861
  • 财政年份:
    2014
  • 资助金额:
    $ 71.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了