EAGER: Automated High Speed Object Category Modeling and Model Based Recognition, Segmentation, Clustering, and Classification
EAGER:自动化高速对象类别建模和基于模型的识别、分割、聚类和分类
基本信息
- 批准号:1144227
- 负责人:
- 金额:$ 26.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores new directions to solving the following problem. Given an image, determine whether and where specific objects, or objects from a specific category, appear in the image. Visual category is defined as earlier, namely, as a collection of objects which share characteristic features that are visually similar, and occur in similar configurations. The visual nature of objects sought is communicated through (training) data containing them, and estimated using machine learning. The approach consists of two main parts. First, it learns whether a given set of previously unseen images (including videos), say supplied by a user, contains any dominant themes, namely, subimages, that occur frequently and look similar. Second, given a set of categories automatically inferred during training and a new test image, the approach recognizes all occurrences in the image of the learned categories. It delineates each such object in the image, and labels it with its category name. Both learning and subsequent recognition do not require human supervision. The approach learns and recognizes categories as image hierarchies. The impact of the project includes accurate high-speed extraction of image regions, image representation by connected segmentation tree, robust image matching, unsupervised extraction of hierarchical category models, efficient recognition of a large number of categories, unsupervised estimation of perceptually salient, relevance weights of subcategory detections to category recognition, and generalization of the proposed approach to extraction of texture elements. More broadly, the proposed approach is useful for applications in search engines, surveillance, video analytics, monitoring and data mining.
这个项目探索了解决以下问题的新方向。给定一幅图像,确定特定对象或来自特定类别的对象是否以及在图像中出现的位置。视觉类别的定义如前所述,即,共享视觉上相似且以相似配置出现的特征特征的对象的集合。寻找的物体的视觉特性通过包含它们的(训练)数据来传达,并使用机器学习来估计。该方法由两个主要部分组成。首先,它学习给定的一组先前未见过的图像(包括视频),例如由用户提供的,是否包含任何频繁出现且看起来相似的主导主题,即子图像。其次,在给定训练期间自动推断的一组类别和新的测试图像的情况下,该方法识别学习类别的图像中的所有出现。它描绘了图像中的每个这样的对象,并使用其类别名称对其进行标记。学习和随后的认可都不需要人的监督。该方法将类别学习和识别为图像层次结构。该项目的影响包括图像区域的准确高速提取、图像的连通分割树表示、稳健的图像匹配、层次化类别模型的无监督提取、大量类别的有效识别、感知显著程度的无监督估计、子类别检测与类别识别的相关性权重、以及所提出的纹理元素提取方法的推广。更广泛地说,建议的方法在搜索引擎、监控、视频分析、监控和数据挖掘中的应用是有用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Narendra Ahuja其他文献
Self-Calibrating 4D Novel View Synthesis from Monocular Videos Using Gaussian Splatting
使用高斯溅射从单目视频中进行自校准 4D 新视图合成
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Fang Li;Hao Zhang;Narendra Ahuja - 通讯作者:
Narendra Ahuja
Learning Implicit Representation for Reconstructing Articulated Objects
学习隐式表示以重建铰接对象
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hao Zhang;Fang Li;Samyak Rawlekar;Narendra Ahuja - 通讯作者:
Narendra Ahuja
Image representation using Voronoi tessellation
- DOI:
10.1016/0734-189x(85)90126-4 - 发表时间:
1985-03-01 - 期刊:
- 影响因子:
- 作者:
Narendra Ahuja;Byong An;Bruce Schachter - 通讯作者:
Bruce Schachter
Tracking Persons-of-Interest via Unsupervised Representation Adaptation
通过无监督表示适应跟踪感兴趣的人
- DOI:
10.1007/s11263-019-01212-1 - 发表时间:
2017-10 - 期刊:
- 影响因子:19.5
- 作者:
Shun Zhang;Jia-Bin Huang;Jongwoo Lim;Yihong Gong;Jinjun Wang;Narendra Ahuja;Ming-Hsuan Yang - 通讯作者:
Ming-Hsuan Yang
Mirror uncertainty and uniqueness conditions for determining shape and motion from orthographic projection
- DOI:
10.1007/bf02028350 - 发表时间:
1994-12-01 - 期刊:
- 影响因子:9.300
- 作者:
Xiaoping Hu;Narendra Ahuja - 通讯作者:
Narendra Ahuja
Narendra Ahuja的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Narendra Ahuja', 18)}}的其他基金
RI-Small: Discovery, Modeling and Recognition of Objects in Image Sets
RI-Small:图像集中对象的发现、建模和识别
- 批准号:
0812188 - 财政年份:2008
- 资助金额:
$ 26.63万 - 项目类别:
Standard Grant
SGER: Segmentation Trees and Their Robust Matching as Core Technologies for Recognition
SGER:分割树及其鲁棒匹配作为识别的核心技术
- 批准号:
0743014 - 财政年份:2007
- 资助金额:
$ 26.63万 - 项目类别:
Standard Grant
Integrated Sensing: Acquisition, Compression and Interpolation of Panoramic Stereo Images of a Scene for Remote Walkthroughs
集成传感:用于远程演练的场景全景立体图像的采集、压缩和插值
- 批准号:
0225523 - 财政年份:2002
- 资助金额:
$ 26.63万 - 项目类别:
Continuing Grant
Multiscale Image Structure Detection
多尺度图像结构检测
- 批准号:
9319038 - 财政年份:1994
- 资助金额:
$ 26.63万 - 项目类别:
Continuing Grant
Japan Long-Term Research Visit: Integrated Image Analysis and Visualization
日本长期考察访问:综合图像分析与可视化
- 批准号:
9215265 - 财政年份:1992
- 资助金额:
$ 26.63万 - 项目类别:
Standard Grant
Image Analysis, Synthesis and Perception of Dynamic 3-D Scenes for Tactical Navigation
用于战术导航的动态 3D 场景的图像分析、合成和感知
- 批准号:
8902728 - 财政年份:1990
- 资助金额:
$ 26.63万 - 项目类别:
Continuing Grant
Integration of Image Acquisition and Surface Estimation for Active Stereo Vision Using Multiple Cues
使用多个线索集成图像采集和表面估计以实现主动立体视觉
- 批准号:
8911942 - 财政年份:1989
- 资助金额:
$ 26.63万 - 项目类别:
Standard Grant
Engineering Research Equipment Grant: Intelligent Robotics
工程研究装备资助:智能机器人
- 批准号:
8604649 - 财政年份:1986
- 资助金额:
$ 26.63万 - 项目类别:
Standard Grant
Presidential Young Investigator Award: Computer Vision (Computer and Information Science)
总统青年研究员奖:计算机视觉(计算机和信息科学)
- 批准号:
8352408 - 财政年份:1984
- 资助金额:
$ 26.63万 - 项目类别:
Continuing Grant
Research Initiation: Dot Pattern Processing Using Voronoi Neighborhoods
研究启动:使用 Voronoi 邻域进行点图案处理
- 批准号:
8106008 - 财政年份:1981
- 资助金额:
$ 26.63万 - 项目类别:
Standard Grant
相似海外基金
An automated manufacturing and high speed imaging platform for identifying functional perturbations in engineered tissues
用于识别工程组织中功能扰动的自动化制造和高速成像平台
- 批准号:
RTI-2021-00523 - 财政年份:2020
- 资助金额:
$ 26.63万 - 项目类别:
Research Tools and Instruments
High speed automated intraoperative microscopy of the prostate circumference to ensure tumor-free margins in radical prostatectomy
前列腺周围的高速自动化术中显微镜检查可确保根治性前列腺切除术中的无肿瘤边缘
- 批准号:
10172866 - 财政年份:2018
- 资助金额:
$ 26.63万 - 项目类别:
EAGER: Unified and Scalable Architecture for Low Speed Automated Shuttle Deployment in a Smart City
EAGER:用于智能城市中低速自动穿梭部署的统一且可扩展的架构
- 批准号:
1640308 - 财政年份:2016
- 资助金额:
$ 26.63万 - 项目类别:
Standard Grant
Control Algorithm, Safety and Traffic Impact Analysis of Automated Variable Speed Limit in Deerfoot Trail, Calgary, AB
艾伯塔省卡尔加里 Deerfoot Trail 自动变速限制的控制算法、安全性和交通影响分析
- 批准号:
425922-2011 - 财政年份:2015
- 资助金额:
$ 26.63万 - 项目类别:
Industrial Postgraduate Scholarships
High speed railway asset mapping system using enhanced 3D imaging and automated visual analytics.
使用增强型 3D 成像和自动视觉分析的高速铁路资产测绘系统。
- 批准号:
101699 - 财政年份:2014
- 资助金额:
$ 26.63万 - 项目类别:
Collaborative R&D
Control Algorithm, Safety and Traffic Impact Analysis of Automated Variable Speed Limit in Deerfoot Trail, Calgary, AB
艾伯塔省卡尔加里 Deerfoot Trail 自动变速限制的控制算法、安全性和交通影响分析
- 批准号:
425922-2011 - 财政年份:2014
- 资助金额:
$ 26.63万 - 项目类别:
Industrial Postgraduate Scholarships
Control Algorithm, Safety and Traffic Impact Analysis of Automated Variable Speed Limit in Deerfoot Trail, Calgary, AB
艾伯塔省卡尔加里 Deerfoot Trail 自动变速限制的控制算法、安全性和交通影响分析
- 批准号:
425922-2011 - 财政年份:2013
- 资助金额:
$ 26.63万 - 项目类别:
Industrial Postgraduate Scholarships
Control Algorithm, Safety and Traffic Impact Analysis of Automated Variable Speed Limit in Deerfoot Trail, Calgary, AB
艾伯塔省卡尔加里 Deerfoot Trail 自动变速限制的控制算法、安全性和交通影响分析
- 批准号:
425922-2011 - 财政年份:2012
- 资助金额:
$ 26.63万 - 项目类别:
Industrial Postgraduate Scholarships
Control Algorithm, Safety and Traffic Impact Analysis of Automated Variable Speed Limit in Deerfoot Trail, Calgary, AB
艾伯塔省卡尔加里 Deerfoot Trail 自动变速限制的控制算法、安全性和交通影响分析
- 批准号:
425922-2011 - 财政年份:2011
- 资助金额:
$ 26.63万 - 项目类别:
Industrial Postgraduate Scholarships
Development of a High-Speed Automated Exploration Method for Reaction Routes and Application to Selective Reaction Control
反应路线高速自动探索方法的开发及其在选择性反应控制中的应用
- 批准号:
21350007 - 财政年份:2009
- 资助金额:
$ 26.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)