ABI Innovation: Synergistic application of cheminformatics and computational geometry approaches for predicting protein-protein interactions
ABI Innovation:化学信息学和计算几何方法的协同应用用于预测蛋白质-蛋白质相互作用
基本信息
- 批准号:1147145
- 负责人:
- 金额:$ 86.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An award is made to the University of North Carolina at Chapel Hill to develop and deliver, ultimately in the form of user-friendly software, novel approaches to analyzing protein-protein interactions (PPIs) that employ a unique combination of concepts at the interface of structural bioinformatics, computational geometry, and cheminformatics. Protein-protein interactions play a central role in all major signaling events that occur in living cells. A new family of cheminformatics descriptors of PPIs derived from Delaunay tessellation of PPI interface termed SNAP3 (Simplicial Neighborhood Analysis of Protein-Protein Packing), based on the previously-developed SNAPP approach, will be developed. These descriptors will be employed as part of novel approaches to (1) identify hot spot regions on protein surfaces and (2) predict the structure of protein-protein (or protein-peptide) complexes using novel GridDock docking method to be developed in this project. In the post-genomic era, analysis and prediction of PPIs is considered critical for elucidating of many if not most protein functions to better our understanding of cell biology, cellular networks and human diseases. This project will provide both the experimental and computational communities with novel and powerful methodologies and software for analyzing and predicting PPIs and enable several important applications including: (1) unique description and comparison of PPIs using chemometric approaches; (2) the identification of unknown PPI hot spots on protein surfaces; and (3) rational design of novel peptides with desired binding specificity against target proteins. It will have a broad impact by making all PPI datasets, computational tools, and models developed accessible via a new module within the publicly available framework, the ChemBench web portal.
位于查佩尔山的北卡罗来纳州大学获得了一个奖项,以开发和交付最终以用户友好的软件形式的分析蛋白质-蛋白质相互作用(PPI)的新方法,该方法在结构生物信息学,计算几何学和化学信息学的界面上采用了独特的概念组合。蛋白质-蛋白质相互作用在活细胞中发生的所有主要信号事件中起着核心作用。基于先前开发的SNAPP方法,将开发一个新的PPI化学信息学描述符家族,该化学信息学描述符来自PPI界面的Delaunay镶嵌,称为SNAP 3(蛋白质-蛋白质包装的简单邻域分析)。这些描述符将被用作新方法的一部分,以(1)识别蛋白质表面的热点区域和(2)使用本项目开发的新GridDock对接方法预测蛋白质-蛋白质(或蛋白质-肽)复合物的结构。在后基因组时代,PPI的分析和预测被认为是阐明许多(如果不是大多数)蛋白质功能的关键,以更好地理解细胞生物学,细胞网络和人类疾病。该项目将为实验和计算界提供分析和预测PPI的新的和强大的方法和软件,并实现几个重要的应用,包括:(1)使用化学计量学方法对PPI进行独特的描述和比较;(2)识别蛋白质表面上未知的PPI热点;和(3)合理设计对靶蛋白具有所需结合特异性的新肽。它将产生广泛的影响,使所有PPI数据集,计算工具和模型开发通过一个新的模块在公开的框架,ChemBench门户网站访问。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Tropsha其他文献
Phosphorylation-activated G protein signaling stabilizes TCP14 and JAZ3 to repress JA signaling and enhance plant immunity
- DOI:
10.1016/j.molp.2025.06.004 - 发表时间:
2025-07-07 - 期刊:
- 影响因子:24.100
- 作者:
Haiyan Jia;Natalie Hewitt;Lucía Jordá;Tigran M. Abramyan;Josh Tolliver;Janice L. Jones;Kinya Nomura;Jing Yang;Sheng-Yang He;Alexander Tropsha;Antonio Molina;Henrik G. Dohlman;Alan M. Jones - 通讯作者:
Alan M. Jones
A data science roadmap for open science organizations engaged in early-stage drug discovery
针对从事早期药物发现的开放科学组织的数据科学路线图
- DOI:
10.1038/s41467-024-49777-x - 发表时间:
2024-07-05 - 期刊:
- 影响因子:15.700
- 作者:
Kristina Edfeldt;Aled M. Edwards;Ola Engkvist;Judith Günther;Matthew Hartley;David G. Hulcoop;Andrew R. Leach;Brian D. Marsden;Amelie Menge;Leonie Misquitta;Susanne Müller;Dafydd R. Owen;Kristof T. Schütt;Nicholas Skelton;Andreas Steffen;Alexander Tropsha;Erik Vernet;Yanli Wang;James Wellnitz;Timothy M. Willson;Djork-Arné Clevert;Benjamin Haibe-Kains;Lovisa Holmberg Schiavone;Matthieu Schapira - 通讯作者:
Matthieu Schapira
The transformational role of GPU computing and deep learning in drug discovery
GPU 计算和深度学习在药物发现中的变革性作用
- DOI:
10.1038/s42256-022-00463-x - 发表时间:
2022-03-23 - 期刊:
- 影响因子:23.900
- 作者:
Mohit Pandey;Michael Fernandez;Francesco Gentile;Olexandr Isayev;Alexander Tropsha;Abraham C. Stern;Artem Cherkasov - 通讯作者:
Artem Cherkasov
AI-driven discovery of synergistic drug combinations against pancreatic cancer
人工智能驱动的针对胰腺癌的协同药物组合的发现
- DOI:
10.1038/s41467-025-56818-6 - 发表时间:
2025-04-29 - 期刊:
- 影响因子:15.700
- 作者:
Mohsen Pourmousa;Sankalp Jain;Elena Barnaeva;Wengong Jin;Joshua Hochuli;Zina Itkin;Travis Maxfield;Cleber Melo-Filho;Andrew Thieme;Kelli Wilson;Carleen Klumpp-Thomas;Sam Michael;Noel Southall;Tommi Jaakkola;Eugene N. Muratov;Regina Barzilay;Alexander Tropsha;Marc Ferrer;Alexey V. Zakharov - 通讯作者:
Alexey V. Zakharov
Comparison of applicability domains of QSAR models: application to the modelling of the environmental toxicity against Tetrahymena pyriformis
- DOI:
10.1186/1752-153x-2-s1-p14 - 发表时间:
2008-03-01 - 期刊:
- 影响因子:4.600
- 作者:
Igor V Tetko;Alexander Tropsha;H Zhu;E Papa;P Gramatica;T Öberg;D Fourches;A Varnek - 通讯作者:
A Varnek
Alexander Tropsha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Tropsha', 18)}}的其他基金
ITR/AP: Computational Analysis of Proteins: From Structure to Sequence to Function
ITR/AP:蛋白质的计算分析:从结构到序列到功能
- 批准号:
0112896 - 财政年份:2001
- 资助金额:
$ 86.91万 - 项目类别:
Continuing Grant
相似海外基金
Footwear Innovation to Improve Safety for Female Turf Sport Players (“FemFITS”)
鞋类创新可提高女性草地运动运动员的安全性 (“FemFITS”)
- 批准号:
10098494 - 财政年份:2024
- 资助金额:
$ 86.91万 - 项目类别:
Collaborative R&D
Yorkshire and the Humber Policy Innovation Partnership
约克郡和汉伯政策创新伙伴关系
- 批准号:
ES/Z50239X/1 - 财政年份:2024
- 资助金额:
$ 86.91万 - 项目类别:
Research Grant
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
- 批准号:
2315247 - 财政年份:2024
- 资助金额:
$ 86.91万 - 项目类别:
Cooperative Agreement
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
- 批准号:
2348836 - 财政年份:2024
- 资助金额:
$ 86.91万 - 项目类别:
Standard Grant
ART: Research to Solutions, Building Translational Capacity in the Central Florida Innovation Ecosystem
ART:从研究到解决方案,在佛罗里达州中部创新生态系统中建设转化能力
- 批准号:
2331319 - 财政年份:2024
- 资助金额:
$ 86.91万 - 项目类别:
Cooperative Agreement
How the mushroom lost its gills: phylogenomics and population genetics of a morphological innovation in the fungal genus Lentinus
蘑菇如何失去鳃:香菇属真菌形态创新的系统基因组学和群体遗传学
- 批准号:
2333266 - 财政年份:2024
- 资助金额:
$ 86.91万 - 项目类别:
Standard Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333683 - 财政年份:2024
- 资助金额:
$ 86.91万 - 项目类别:
Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333684 - 财政年份:2024
- 资助金额:
$ 86.91万 - 项目类别:
Continuing Grant
REU Site: Polymer Innovation for a Sustainable Future
REU 网站:聚合物创新打造可持续未来
- 批准号:
2348780 - 财政年份:2024
- 资助金额:
$ 86.91万 - 项目类别:
Standard Grant