SI2-SSI: Collaborative Research: A Computational Materials Data and Design Environment
SI2-SSI:协作研究:计算材料数据和设计环境
基本信息
- 批准号:1148011
- 负责人:
- 金额:$ 105万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-10-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThe Office of Cyberinfrastructure, Division of Materials Research, and Chemistry Division contribute funds to this award made on a proposal to the Software Infrastructure for Sustained Innovation solicitation. This award supports development of new theory and tools to enable rapid and efficient calculation of atomic level material properties. The incredible advances in computing power and tools of atomic scale simulation have now made it possible to predict critical properties for existing and new materials without experimental input. However, present simulation approaches typically require researchers to perform many steps by hand, which is both slow and error prone compared to what a computer can do. Through computer codes that automate the tasks in first principles modeling human bottlenecks can be removed and predictive capabilities of first principles simulation techniques can be accelerated by orders of magnitude. Such a high-throughput computing approach will enable generation of critical materials data on an unprecedented scale and open new doors for material science.The team will develop tools for the specific challenges of predicting point defect properties, atomic diffusion, and surface stability, with a focus on automating steps to enable computations on a massive scale. The PIs will use state-of-the-art first principles quantum mechanical methods. Best practices for treating the multiple issues of charged defect calculations, for example convergence with cell size and band gap errors, will be refined and automated for rapid execution. Similarly, tools to identify diffusion pathways and determine their barriers will be streamlined to allow users to quickly identify transport properties of new systems. New theoretical approaches to modeling charged surfaces will be developed to enable simulation of surfaces in more realistic environments. This award will support prediction of properties that play a critical role in advancing a wide range of technologies, from improving semiconductors for next generation computers to better fuel cells for more efficient energy conversion. Software tools and data produced by this effort will enable researchers to predict properties for thousands of materials with almost no human effort, accelerating the pace at which researchers can develop new materials technologies.Software and data developed from this award will be shared with academic and industrial researchers through modules on the web, scientific journals and presentations at national and international conferences. This award supports two workshops to educate researchers about the latest opportunities to use high-throughput computing of atomic scale properties for materials development. Students will be trained to work at the critical interface of the computer and physical sciences, supporting a generation of scientists who use modern computers to their fullest potential to develop new understanding and technology.NON-TECHNICAL SUMMARYThe Office of Cyberinfrastructure, Division of Materials Research, and Chemistry Division contribute funds to this award made on a proposal to the Software Infrastructure for Sustained Innovation solicitation. This award supports development of new theory and tools to enable rapid and efficient calculation of atomic level material properties. The incredible advances in computing power and tools of atomic scale simulation have now made it possible to predict critical properties for existing and new materials without experimental input. However, present simulation approaches typically require researchers to perform many steps by hand, which is both slow and error prone compared to what a computer can do. Through computer codes that automate the tasks in first-principles modeling human bottlenecks can be removed and predictive capabilities of first principles simulation techniques can be accelerated by orders of magnitude. Such a high-throughput computing approach will enable generation of critical materials data on an unprecedented scale and open new doors for material science.The team will develop tools for the specific challenges of predicting point defect properties, atomic diffusion, and surface stability, with a focus on automating steps to enable computations on a massive scale. These properties play a critical role in advancing a wide range of technologies, from improving semiconductors for next generation computers to better fuel cells for more efficient energy conversion. Software tools and data produced by this effort will enable researchers to predict properties for thousands of materials with almost no human effort, accelerating the pace at which researchers can develop new materials technologies.Software and data developed from this award will be shared with academic and industrial researchers through modules on the web, scientific journals and presentations at national and international conferences. In particular, this award will support two workshops to educate researchers about the latest opportunities to use high-throughput computing of atomic scale properties for materials development. This award will train students to work at the critical interface of the computer and physical sciences, supporting a generation of scientists who use modern computers to their fullest potential to develop new understanding and technology.
技术摘要网络基础设施办公室、材料研究部和化学部根据持续创新软件基础设施征集提案为该奖项提供资金。该奖项支持开发新的理论和工具,以实现快速有效地计算原子级材料特性。 计算能力和原子尺度模拟工具的令人难以置信的进步,现在已经可以在没有实验输入的情况下预测现有和新材料的临界特性。 然而,目前的模拟方法通常需要研究人员手动执行许多步骤,与计算机可以做的相比,这既慢又容易出错。 通过计算机代码,自动化的任务,在第一原理建模的人的瓶颈可以被删除和预测能力的第一原理仿真技术可以加快数量级。 这种高通量计算方法将能够以前所未有的规模生成关键材料数据,并为材料科学打开新的大门。该团队将开发工具,以应对预测点缺陷特性、原子扩散和表面稳定性等特定挑战,重点是自动化步骤,以实现大规模计算。 PI将使用最先进的第一原理量子力学方法。 处理带电缺陷计算的多个问题的最佳实践,例如与单元尺寸和带隙误差的收敛,将被细化和自动化以快速执行。 同样,查明扩散途径和确定其障碍的工具将得到简化,使用户能够迅速查明新系统的运输特性。 新的理论方法建模带电表面将开发,使模拟表面在更现实的环境。 该奖项将支持在推进各种技术方面发挥关键作用的性质预测,从改进下一代计算机的半导体到更好的燃料电池,以实现更有效的能量转换。 该奖项所产生的软件工具和数据将使研究人员能够预测数千种材料的特性,几乎不需要人工,从而加快研究人员开发新材料技术的步伐。该奖项所开发的软件和数据将通过网络模块、科学期刊以及在国家和国际会议上的演讲与学术和工业研究人员共享。 该奖项支持两个研讨会,以教育研究人员利用高通量计算原子尺度特性进行材料开发的最新机会。 学生将接受培训,在计算机和物理科学的关键接口工作,支持一代科学家谁使用现代计算机,以最大限度地发挥其潜力,以发展新的理解和技术。非技术性总结网络基础设施办公室,材料研究部和化学部提供资金,这个奖项的建议,以软件基础设施的持续创新征集。该奖项支持开发新的理论和工具,以实现快速有效地计算原子级材料特性。 计算能力和原子尺度模拟工具的令人难以置信的进步,现在已经可以在没有实验输入的情况下预测现有和新材料的临界特性。 然而,目前的模拟方法通常需要研究人员手动执行许多步骤,与计算机可以做的相比,这既慢又容易出错。 通过计算机代码,自动化的任务,在第一原理建模的人的瓶颈可以被删除和预测能力的第一原理仿真技术可以加快数量级。 这种高通量计算方法将能够以前所未有的规模生成关键材料数据,并为材料科学打开新的大门。该团队将开发工具,以应对预测点缺陷特性、原子扩散和表面稳定性等特定挑战,重点是自动化步骤,以实现大规模计算。 这些特性在推进各种技术方面发挥着关键作用,从改进下一代计算机的半导体到更好的燃料电池,以实现更有效的能量转换。 该奖项所产生的软件工具和数据将使研究人员能够预测数千种材料的特性,几乎不需要人工,从而加快研究人员开发新材料技术的步伐。该奖项所开发的软件和数据将通过网络模块、科学期刊以及在国家和国际会议上的演讲与学术和工业研究人员共享。 特别是,该奖项将支持两个研讨会,以教育研究人员利用高通量计算原子尺度特性进行材料开发的最新机会。 该奖项将培养学生在计算机和物理科学的关键接口工作,支持一代科学家利用现代计算机充分发挥其潜力,以发展新的理解和技术。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prediction of concrete coefficient of thermal expansion and other properties using machine learning
- DOI:10.1016/j.conbuildmat.2019.05.006
- 发表时间:2019-09
- 期刊:
- 影响因子:7.4
- 作者:V. Nilsen;Le T. Pham;Michael Hibbard;Adam Klager;S. Cramer;D. Morgan
- 通讯作者:V. Nilsen;Le T. Pham;Michael Hibbard;Adam Klager;S. Cramer;D. Morgan
Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures
- DOI:10.1088/1367-2630/16/1/015018
- 发表时间:2014-01-13
- 期刊:
- 影响因子:3.3
- 作者:Angsten, Thomas;Mayeshiba, Tam;Morgan, Dane
- 通讯作者:Morgan, Dane
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dane Morgan其他文献
Predicting performance of object detection models in electron microscopy using random forests
使用随机森林预测电子显微镜中物体检测模型的性能
- DOI:
10.1039/d4dd00351a - 发表时间:
2025-01-31 - 期刊:
- 影响因子:5.600
- 作者:
Ni Li;Ryan Jacobs;Matthew Lynch;Vidit Agrawal;Kevin Field;Dane Morgan - 通讯作者:
Dane Morgan
Best practices for fitting machine learning interatomic potentials for molten salts: A case study using NaCl-MgCl<sub>2</sub>
- DOI:
10.1016/j.commatsci.2024.113409 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Siamak Attarian;Chen Shen;Dane Morgan;Izabela Szlufarska - 通讯作者:
Izabela Szlufarska
A practical guide to machine learning interatomic potentials – Status and future
机器学习原子间势的实用指南——现状与未来
- DOI:
10.1016/j.cossms.2025.101214 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:13.400
- 作者:
Ryan Jacobs;Dane Morgan;Siamak Attarian;Jun Meng;Chen Shen;Zhenghao Wu;Clare Yijia Xie;Julia H. Yang;Nongnuch Artrith;Ben Blaiszik;Gerbrand Ceder;Kamal Choudhary;Gabor Csanyi;Ekin Dogus Cubuk;Bowen Deng;Ralf Drautz;Xiang Fu;Jonathan Godwin;Vasant Honavar;Olexandr Isayev;Brandon M. Wood - 通讯作者:
Brandon M. Wood
Tradipitant effective in the reduction of vomiting associated with motion sickness across varied sea conditions
- DOI:
10.1016/j.jns.2023.121099 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Vasilios Polymeropoulos;Margaret Bushman;Dane Morgan;Leah Kiely;Cameron Miller;Elizabeth Sutherland;Abigail Goldberg;Tanner Davis;Raina Mourad;Nikolas Pham;Changfu Xiao;Christos Polymeropoulos;Gunther Birznieks;Mihael Polymeropoulos - 通讯作者:
Mihael Polymeropoulos
How close are the classical two-body potentials to ab initio calculations? Insights from linear machine learning based force matching.
基于线性机器学习的力匹配的见解与经典的二体势有多接近?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.4
- 作者:
Zheng Yu;Ajay Annamareddy;Dane Morgan;Bu Wang - 通讯作者:
Bu Wang
Dane Morgan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dane Morgan', 18)}}的其他基金
Collaborative Research: CyberTraining: Implementation: Medium: The Informatics Skunkworks Program for Undergraduate Research at the Interface of Data Science and Materials Science
合作研究:网络培训:实施:媒介:数据科学和材料科学接口本科生研究信息学 Skunkworks 计划
- 批准号:
2017072 - 财政年份:2020
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Machine Learning Materials Innovation Infrastructure
合作研究:框架:机器学习材料创新基础设施
- 批准号:
1931298 - 财政年份:2019
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
DMREF: High Throughput Design of Metallic Glasses with Physically Motivated Descriptors
DMREF:具有物理激励描述符的金属玻璃的高通量设计
- 批准号:
1728933 - 财政年份:2017
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: MIDWEST: Collaborative: Integrative Materials Design (IMaD): Leverage, Innovate, and Disseminate
BD 辐条:辐条:中西部:协作:集成材料设计 (IMaD):利用、创新和传播
- 批准号:
1636910 - 财政年份:2017
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
Collaborative Research: Helium Diffusion in Lower Mantle Minerals
合作研究:下地幔矿物中的氦扩散
- 批准号:
1265283 - 财政年份:2013
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
Collaborative Research: Determination of Ni-Fe-Cr Species Dependent Transport Through Control of Temperature, Irradiation, and Grain Size
合作研究:通过控制温度、辐照度和晶粒尺寸来测定 Ni-Fe-Cr 物种依赖性传输
- 批准号:
1105640 - 财政年份:2011
- 资助金额:
$ 105万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: Valence state of iron in the lower mantle
CSEDI合作研究:下地幔铁的价态
- 批准号:
0966899 - 财政年份:2010
- 资助金额:
$ 105万 - 项目类别:
Continuing Grant
Collaborative Research: Theoretical and Experimental Investigations on the Role of Iron in the Physics and Chemistry of the Lower Mantle
合作研究:铁在下地幔物理和化学中的作用的理论和实验研究
- 批准号:
0738886 - 财政年份:2008
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
CRC: Collaborative Research: Structure-Sorption Relationships In Disordered Iron-oxyhydroxides
CRC:合作研究:无序羟基氧化铁的结构-吸附关系
- 批准号:
0714113 - 财政年份:2007
- 资助金额:
$ 105万 - 项目类别:
Continuing Grant
相似国自然基金
考虑SSI效应的导管架式海洋平台抗震性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑SSI的层间隔震高层建筑结构在三维地震下的响应研究
- 批准号:52168072
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
考虑SSI效应的大型储罐动力学特性及其隔板减晃研究
- 批准号:51978336
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
考虑SSI效应的摇摆墙-框架结构抗震机理及性能评估方法研究
- 批准号:51978524
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
考虑能量需求和SSI效应的RC梁式桥基于性能的抗震设计方法
- 批准号:50908014
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
2039142 - 财政年份:2020
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
SI2-SSI: Collaborative Research: Einstein Toolkit Community Integration and Data Exploration
SI2-SSI:协作研究:Einstein Toolkit 社区集成和数据探索
- 批准号:
2114580 - 财政年份:2020
- 资助金额:
$ 105万 - 项目类别:
Continuing Grant
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
2001752 - 财政年份:2019
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
1664022 - 财政年份:2017
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Cyberinfrastructure for Advancing Hydrologic Knowledge through Collaborative Integration of Data Science, Modeling and Analysis
合作研究:SI2-SSI:通过数据科学、建模和分析的协作集成推进水文知识的网络基础设施
- 批准号:
1664061 - 财政年份:2017
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
SI2-SSI: Collaborative Research: Scalable Infrastructure for Enabling Multiscale and Multiphysics Applications in Fluid Dynamics, Solid Mechanics, and Fluid-Structure Interaction
SI2-SSI:协作研究:可扩展基础设施,支持流体动力学、固体力学和流固耦合中的多尺度和多物理场应用
- 批准号:
1836797 - 财政年份:2017
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Open Source Support for Massively Parallel, Generic Finite Element Methods
合作研究:SI2-SSI:对大规模并行、通用有限元方法的开源支持
- 批准号:
1741870 - 财政年份:2017
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Modules for Experiments in Stellar Astrophysics
合作研究:SI2-SSI:恒星天体物理实验模块
- 批准号:
1663684 - 财政年份:2017
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Inquiry-Focused Volumetric Data Analysis Across Scientific Domains: Sustaining and Expanding the yt Community
合作研究:SI2-SSI:跨科学领域以调查为中心的体积数据分析:维持和扩展 yt 社区
- 批准号:
1663893 - 财政年份:2017
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Cyberinfrastructure for Advancing Hydrologic Knowledge through Collaborative Integration of Data Science, Modeling and Analysis
合作研究:SI2-SSI:通过数据科学、建模和分析的协作集成推进水文知识的网络基础设施
- 批准号:
1664018 - 财政年份:2017
- 资助金额:
$ 105万 - 项目类别:
Standard Grant