DMREF: High Throughput Design of Metallic Glasses with Physically Motivated Descriptors
DMREF:具有物理激励描述符的金属玻璃的高通量设计
基本信息
- 批准号:1728933
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Description: Silica-based glasses are familiar to most of us from our experiences with everything from windows to wineglasses. However, when cooled quickly enough, some metal alloys can also form a glassy state. Metallic glasses have attractive properties such as high elastic modulus, excellent strength, good biocompatibility, and the ability to be processed like plastics. Applications include packaging, arterial stents, water purification, and Micro-Electro-Mechanical Systems gears and springs. The slowest cooling rate that still forms a glass is called the critical cooling rate. Although many metals can form a glass, only a rare set of alloys have slow enough critical cooling rate that they can form a significant bulk volume of glassy material, and these alloys are said to have good glass forming ability. Despite the importance of these materials and years of research, there are still no rigorous, consistent, and quantitative rules to predict the actual glass forming ability of a metallic alloy system. To solve this problem, this project will develop an extensible materials informatics framework for predicting the glass-forming ability of metal alloys, and then apply that framework to develop aluminum- and magnesium-based alloys with improved glass forming ability.Technical description: In order to discover new aluminum- and magnesium-based bulk metallic glasses with superior glass-forming ability, the team will execute a dual-loop iterative materials design approach. A rapid materials design loop will provide high-throughput materials discovery by integrating experimental and simulated data with machine learning methods. An unprecedented body of experimental data on glass forming ability and basic mechanical properties will be generated by combinatorial 3D printing synthesis, followed by rapid optical, microscopy, thermal, and nanomechanical characterization. A similarly unique database of liquid and glass thermodynamic, kinetic, and structural properties will be determined by automated, high-throughput ab initio molecular dynamics. Machine-learning methods, trained on the data and physically motivated descriptors from existing experiments and the ab initio molecular dynamics simulation, will search a space of up to hundreds of thousands of potential alloys for the most promising candidates, which will then be synthesized, characterized and used to refine the models. Slower descriptor design loop studies will study select alloys in detail with fluctuation electron microscopy and extensive simulations to develop improved descriptors, which will then be incorporated into the rapid materials design loop and further validated by their predictive ability. This work will produce the first set of large-scale databases with both true measures of glass forming ability and extensive thermophysical data from simulations, and integrate them to generate physical descriptor driven machine-learning models for iterative new metallic glass search and discovery. The PIs also plan to release the Materials Simulation Toolkit - Machine Learning (MASTML) as open source and build a user community around the language by ensuring that interested researchers are able to contribute to the MASTML codebase. This will allow a wider growth of the project. This aspect is of special interest to the software cluster in the Office of Advanced Cyberinfrastructure, which has provided co-funding for this award.
非技术性描述:我们大多数人都熟悉硅基玻璃,从窗户到酒杯。然而,当冷却足够快时,一些金属合金也可以形成玻璃态。金属玻璃具有高弹性模量、优异的强度、良好的生物相容性和像塑料一样加工的能力等吸引人的特性。应用包括包装、动脉支架、水净化和微机电系统齿轮和弹簧。仍然形成玻璃的最慢冷却速率称为临界冷却速率。虽然许多金属可以形成玻璃,但只有少数合金具有足够慢的临界冷却速率,使得它们可以形成大量的玻璃状材料,并且这些合金据说具有良好的玻璃形成能力。尽管这些材料的重要性和多年的研究,仍然没有严格的,一致的,定量的规则来预测金属合金系统的实际玻璃形成能力。为了解决这一问题,本项目将开发一个可扩展的材料信息学框架,用于预测金属合金的玻璃形成能力,然后将该框架应用于开发具有改善的玻璃形成能力的铝基和镁基合金。为了发现具有上级玻璃形成能力的新型铝基和镁基块体金属玻璃,该团队将执行双循环迭代材料设计方法。快速材料设计循环将通过将实验和模拟数据与机器学习方法相结合来提供高通量材料发现。将通过组合3D打印合成,然后进行快速光学、显微镜、热和纳米机械表征,生成有关玻璃形成能力和基本机械性能的前所未有的实验数据。一个类似的独特的数据库的液体和玻璃的热力学,动力学和结构特性将被确定的自动化,高通量从头算分子动力学。根据现有实验和从头算分子动力学模拟的数据和物理动机描述符进行训练的机器学习方法将在多达数十万种潜在合金的空间中搜索最有希望的候选者,然后将其合成,表征并用于优化模型。慢速描述符设计循环研究将使用波动电子显微镜和广泛的模拟详细研究选定的合金,以开发改进的描述符,然后将其纳入快速材料设计循环,并通过其预测能力进一步验证。这项工作将产生第一组大规模数据库,其中既有玻璃形成能力的真实测量值,又有来自模拟的大量热物理数据,并将它们整合起来,生成物理描述符驱动的机器学习模型,用于迭代新的金属玻璃搜索和发现。PI还计划将材料模拟工具包-机器学习(MASTML)作为开源发布,并通过确保感兴趣的研究人员能够为MASTML代码库做出贡献,围绕该语言建立一个用户社区。这将使该项目得到更广泛的发展。高级网络基础设施办公室的软件集群对此特别感兴趣,该办公室为该奖项提供了共同资助。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular simulation-derived features for machine learning predictions of metal glass forming ability
- DOI:10.1016/j.commatsci.2021.110728
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Ben Afflerbach;L. Schultz;J. Perepezko;P. Voyles;I. Szlufarska;D. Morgan
- 通讯作者:Ben Afflerbach;L. Schultz;J. Perepezko;P. Voyles;I. Szlufarska;D. Morgan
Experimental validation and microstructure characterization of topology optimized, additively manufactured SS316L components
- DOI:10.1016/j.msea.2020.139050
- 发表时间:2020-03-03
- 期刊:
- 影响因子:6.4
- 作者:Rankouhi, B.;Bertsch, K. M.;Suresh, K.
- 通讯作者:Suresh, K.
A dimensionless number for high-throughput design of multi-principal element alloys in directed energy deposition
定向能量沉积多主元合金高通量设计的无量纲数
- DOI:10.1063/5.0069384
- 发表时间:2021
- 期刊:
- 影响因子:4
- 作者:Islam, Zahabul;Nelaturu, Phalgun;Thoma, Dan J.
- 通讯作者:Thoma, Dan J.
Molecular dynamic characteristic temperatures for predicting metallic glass forming ability
- DOI:10.1016/j.commatsci.2021.110877
- 发表时间:2021-09
- 期刊:
- 影响因子:3.3
- 作者:L. Schultz;Ben Afflerbach;I. Szlufarska;D. Morgan
- 通讯作者:L. Schultz;Ben Afflerbach;I. Szlufarska;D. Morgan
StructOpt: A modular materials structure optimization suite incorporating experimental data and simulated energies
StructOpt:结合实验数据和模拟能量的模块化材料结构优化套件
- DOI:10.1016/j.commatsci.2018.12.052
- 发表时间:2019
- 期刊:
- 影响因子:3.3
- 作者:Maldonis, Jason J.;Xu, Zhongnan;Song, Zhewen;Yu, Min;Mayeshiba, Tam;Morgan, Dane;Voyles, Paul M.
- 通讯作者:Voyles, Paul M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dane Morgan其他文献
Predicting performance of object detection models in electron microscopy using random forests
使用随机森林预测电子显微镜中物体检测模型的性能
- DOI:
10.1039/d4dd00351a - 发表时间:
2025-01-31 - 期刊:
- 影响因子:5.600
- 作者:
Ni Li;Ryan Jacobs;Matthew Lynch;Vidit Agrawal;Kevin Field;Dane Morgan - 通讯作者:
Dane Morgan
Best practices for fitting machine learning interatomic potentials for molten salts: A case study using NaCl-MgCl<sub>2</sub>
- DOI:
10.1016/j.commatsci.2024.113409 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Siamak Attarian;Chen Shen;Dane Morgan;Izabela Szlufarska - 通讯作者:
Izabela Szlufarska
A practical guide to machine learning interatomic potentials – Status and future
机器学习原子间势的实用指南——现状与未来
- DOI:
10.1016/j.cossms.2025.101214 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:13.400
- 作者:
Ryan Jacobs;Dane Morgan;Siamak Attarian;Jun Meng;Chen Shen;Zhenghao Wu;Clare Yijia Xie;Julia H. Yang;Nongnuch Artrith;Ben Blaiszik;Gerbrand Ceder;Kamal Choudhary;Gabor Csanyi;Ekin Dogus Cubuk;Bowen Deng;Ralf Drautz;Xiang Fu;Jonathan Godwin;Vasant Honavar;Olexandr Isayev;Brandon M. Wood - 通讯作者:
Brandon M. Wood
Tradipitant effective in the reduction of vomiting associated with motion sickness across varied sea conditions
- DOI:
10.1016/j.jns.2023.121099 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Vasilios Polymeropoulos;Margaret Bushman;Dane Morgan;Leah Kiely;Cameron Miller;Elizabeth Sutherland;Abigail Goldberg;Tanner Davis;Raina Mourad;Nikolas Pham;Changfu Xiao;Christos Polymeropoulos;Gunther Birznieks;Mihael Polymeropoulos - 通讯作者:
Mihael Polymeropoulos
How close are the classical two-body potentials to ab initio calculations? Insights from linear machine learning based force matching.
基于线性机器学习的力匹配的见解与经典的二体势有多接近?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.4
- 作者:
Zheng Yu;Ajay Annamareddy;Dane Morgan;Bu Wang - 通讯作者:
Bu Wang
Dane Morgan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dane Morgan', 18)}}的其他基金
Collaborative Research: CyberTraining: Implementation: Medium: The Informatics Skunkworks Program for Undergraduate Research at the Interface of Data Science and Materials Science
合作研究:网络培训:实施:媒介:数据科学和材料科学接口本科生研究信息学 Skunkworks 计划
- 批准号:
2017072 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Machine Learning Materials Innovation Infrastructure
合作研究:框架:机器学习材料创新基础设施
- 批准号:
1931298 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: MIDWEST: Collaborative: Integrative Materials Design (IMaD): Leverage, Innovate, and Disseminate
BD 辐条:辐条:中西部:协作:集成材料设计 (IMaD):利用、创新和传播
- 批准号:
1636910 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: Helium Diffusion in Lower Mantle Minerals
合作研究:下地幔矿物中的氦扩散
- 批准号:
1265283 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SI2-SSI: Collaborative Research: A Computational Materials Data and Design Environment
SI2-SSI:协作研究:计算材料数据和设计环境
- 批准号:
1148011 - 财政年份:2012
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: Determination of Ni-Fe-Cr Species Dependent Transport Through Control of Temperature, Irradiation, and Grain Size
合作研究:通过控制温度、辐照度和晶粒尺寸来测定 Ni-Fe-Cr 物种依赖性传输
- 批准号:
1105640 - 财政年份:2011
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: Valence state of iron in the lower mantle
CSEDI合作研究:下地幔铁的价态
- 批准号:
0966899 - 财政年份:2010
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: Theoretical and Experimental Investigations on the Role of Iron in the Physics and Chemistry of the Lower Mantle
合作研究:铁在下地幔物理和化学中的作用的理论和实验研究
- 批准号:
0738886 - 财政年份:2008
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CRC: Collaborative Research: Structure-Sorption Relationships In Disordered Iron-oxyhydroxides
CRC:合作研究:无序羟基氧化铁的结构-吸附关系
- 批准号:
0714113 - 财政年份:2007
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: High-Throughput Exploration of Microstructure-Sensitive Design for Steel Microstructure Optimization to Enhance its Corrosion Resistance in Concrete
合作研究:微观结构敏感设计的高通量探索,用于优化钢微观结构以增强其在混凝土中的耐腐蚀性能
- 批准号:
2221098 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Equipment: MRI: Track 2 Acquisition of an Automated High-Throughput System for Combinatorial Design and Development of Complex Polymer Systems
设备: MRI:轨道 2 获取用于复杂聚合物系统的组合设计和开发的自动化高通量系统
- 批准号:
2320276 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: High-Throughput Exploration of Microstructure-Sensitive Design for Steel Microstructure Optimization to Enhance its Corrosion Resistance in Concrete
合作研究:微观结构敏感设计的高通量探索,用于优化钢微观结构以增强其在混凝土中的耐腐蚀性能
- 批准号:
2221104 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
21ENGBIO - High-Throughput Design of Novel Sensors to Help Address the Impending Phosphate Crisis
21ENGBIO - 新型传感器的高通量设计有助于解决迫在眉睫的磷酸盐危机
- 批准号:
BB/W013320/1 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Research Grant
Computational design and high-throughput experimentation to discover organic redox-active molecules
计算设计和高通量实验发现有机氧化还原活性分子
- 批准号:
2753951 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Studentship
Physical Layer Design for Improving Throughput and Security in Wireless Networks
用于提高无线网络吞吐量和安全性的物理层设计
- 批准号:
RGPIN-2020-05984 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Discovery Grants Program - Individual
Physical Layer Design for Improving Throughput and Security in Wireless Networks
用于提高无线网络吞吐量和安全性的物理层设计
- 批准号:
DGDND-2020-05984 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Computational high throughput screening methods and data driven materials design
计算高通量筛选方法和数据驱动的材料设计
- 批准号:
RGPIN-2019-06867 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Discovery Grants Program - Individual
High throughput 2D-IR protein screening - new technology for drug design and diagnostics
高通量 2D-IR 蛋白质筛选 - 药物设计和诊断新技术
- 批准号:
ST/W000539/1 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Research Grant
D-novo minibinders: developing a high throughput platform for computational design and production of tailored synthetic proteins
D-novo minibinders:开发高通量平台,用于计算设计和定制合成蛋白质的生产
- 批准号:
2731538 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Studentship