RTG in Combinatorics
组合数学中的 RTG
基本信息
- 批准号:1148634
- 负责人:
- 金额:$ 217.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This RTG is directed by four PIs in Combinatorics at the University of Minnesota: Gregg Musiker, Pavlo Pylyavskyy, Victor Reiner, and Dennis Stanton. It is fueled by the strongly held conviction of the PIs that young mathematicians in combinatorics need exposure to a wide array of mathematics, including traditional as well more recent topics, such as cluster algebras, total positivity, and tropical geometry. Combinatorics is extremely well-suited for training young researchers partly because its topics and problems range from those which are elementary and can be introduced to undergraduates to those which are highly non-elementary and have deep connections to representation theory, algebraic geometry, topology, and mathematical physics. A cornerstone of the RTG is a reorganization of the group?s successful REU program, with the goals of greater efficiency and educating a broader audience, by thoroughly involving grad students and postdocs. In addition, the funding will allow for a larger postdoc program, as well as opportunities for postdocs to teach new course offerings in hot topics, and to teach talented high school students in the University of Minnesota Talented Youth Math Program. It will fund more travel to conferences for grad students and postdocs so that they can keep abreast of developments and disseminate their own research, and it will give them organizational experience via the hosting of two kinds of conferences: a series of Midwest Combinatorics Conferences, and a repeat-hosting of the annual Grad Student Combinatorics Conference which originated in Minnesota in 2005.The RTG leverages both the long-term mentoring experience and fresh perspectives among its PIs to create a vertically well-integrated training environment in combinatorics at the University of Minnesota. It builds on the previous success in summer training of undergraduates in research, by exposing graduate students and postdocs to research problems in parallel with the undergraduates, while involving them in the mentoring process. In addition, it will offer wider educational opportunities and experiences for postdocs, as well as more opportunities for both graduate students and postdocs to travel extensively to conferences, and learn to organize conferences themselves. The RTG expands outreach to Minnesota's regional neighbor institutions, through a series of Midwest conferences, outreach talks to schools in the greater Minnesota area, including the Summer Math Program for Women run at Carleton College, and through the University of Minnesota's Talented Youth Math Program for advanced high school students.
该RTG由明尼苏达大学组合数学专业的四位PI指导:Gregg Musiker、Pavlo Pylyavskyy、维克托雷纳和丹尼斯斯坦顿。 它是由PI的坚定信念推动的,即组合数学的年轻数学家需要接触到广泛的数学,包括传统的以及最近的主题,如簇代数,全正性和热带几何。 组合数学非常适合培养年轻的研究人员,部分原因是它的主题和问题范围从那些基本的,可以介绍给本科生到那些高度非基本的,与表示论,代数几何,拓扑学和数学物理有着深刻的联系。 RTG的一个基石是集团的重组?的成功REU计划,更高的效率和教育更广泛的受众的目标,通过彻底参与格拉德生和博士后。 此外,这笔资金将允许一个更大的博士后项目,以及博士后教授热门主题新课程的机会,并在明尼苏达大学天才青年数学项目中教授有才华的高中生。 它将资助格拉德生和博士后参加更多的会议,使他们能够跟上发展并传播自己的研究,它将通过主办两种会议为他们提供组织经验:一系列的中西部组合数学会议并于2005年在明尼苏达州重复举办一年一度的格拉德学生组合数学会议。RTG利用了长期的长期指导经验和新的观点之间的PI创造一个垂直整合的培训环境在明尼苏达大学的组合。 它建立在以前成功的本科生夏季培训的研究,通过暴露研究生和博士后的研究问题与本科生平行,同时让他们在指导过程中。 此外,它将为博士后提供更广泛的教育机会和经验,以及为研究生和博士后提供更多机会,广泛参加会议,并学习自己组织会议。 RTG通过一系列中西部会议、与大明尼苏达地区学校的外联会谈,包括在卡尔顿学院举办的女子夏季数学课程,以及通过明尼苏达大学针对高级高中生的天才青年数学课程,扩大了与明尼苏达州区域邻国机构的外联。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Reiner其他文献
Plactification
- DOI:
10.1023/a:1022434000967 - 发表时间:
1995-10-01 - 期刊:
- 影响因子:0.900
- 作者:
Victor Reiner;Mark Shimozono - 通讯作者:
Mark Shimozono
Sandpile groups for cones over trees
树上的锥体沙堆组
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Victor Reiner;Dorian Smith - 通讯作者:
Dorian Smith
Weyl Group $${\varvec{q}}$$ -Kreweras Numbers and Cyclic Sieving
- DOI:
10.1007/s00026-018-0408-y - 发表时间:
2018-11-13 - 期刊:
- 影响因子:0.700
- 作者:
Victor Reiner;Eric Sommers - 通讯作者:
Eric Sommers
Cyclic quasi-symmetric functions
- DOI:
10.1007/s11856-021-2167-4 - 发表时间:
2021-07-02 - 期刊:
- 影响因子:0.800
- 作者:
Ron M. Adin;Ira M. Gessel;Victor Reiner;Yuval Roichman - 通讯作者:
Yuval Roichman
Alternating subgroups of Coxeter groups
- DOI:
10.1016/j.jcta.2007.10.004 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:
- 作者:
Francesco Brenti;Victor Reiner;Yuval Roichman - 通讯作者:
Yuval Roichman
Victor Reiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Reiner', 18)}}的其他基金
Finite Reflection and General Linear Groups
有限反射和一般线性群
- 批准号:
1601961 - 财政年份:2016
- 资助金额:
$ 217.56万 - 项目类别:
Continuing Grant
Schubert varieties: Combinatorics, Computation and Geometry
舒伯特流派:组合学、计算和几何
- 批准号:
0601010 - 财政年份:2006
- 资助金额:
$ 217.56万 - 项目类别:
Continuing Grant
Catalan Structures for Weyl and Coxeter Groups
Weyl 和 Coxeter 群的 Catalan 结构
- 批准号:
0245379 - 财政年份:2003
- 资助金额:
$ 217.56万 - 项目类别:
Continuing Grant
Combinatorics and Topology of Simplicial Complexes
单纯复形的组合学和拓扑
- 批准号:
9877047 - 财政年份:1999
- 资助金额:
$ 217.56万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9206371 - 财政年份:1992
- 资助金额:
$ 217.56万 - 项目类别:
Fellowship Award
相似海外基金
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 217.56万 - 项目类别:
Research Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 217.56万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 217.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
- 批准号:
2401464 - 财政年份:2024
- 资助金额:
$ 217.56万 - 项目类别:
Standard Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
$ 217.56万 - 项目类别:
Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
- 批准号:
2349015 - 财政年份:2024
- 资助金额:
$ 217.56万 - 项目类别:
Standard Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 217.56万 - 项目类别:
Standard Grant
Conference: Additive Combinatorics 2024
会议:加性组合学 2024
- 批准号:
2418414 - 财政年份:2024
- 资助金额:
$ 217.56万 - 项目类别:
Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
- 批准号:
2415358 - 财政年份:2024
- 资助金额:
$ 217.56万 - 项目类别:
Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
$ 217.56万 - 项目类别:
Standard Grant