RTG: Combinatorics and Algebra
RTG:组合学和代数
基本信息
- 批准号:1745638
- 负责人:
- 金额:$ 199.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This RTG at the University of Minnesota is a collaborative effort between three PIs in Combinatorics and two in Algebra. The many undergraduates, PhD students and postdocs supervised by these PIs require broad training in modern areas of mathematics in common to the PIs' research programs, such as representation theory, algebraic geometry, topology, and mathematical physics. In addition to continuing the most successful features of the previous RTG in Combinatorics, such as the strong and growing summer REU program, the current grant will fund exciting new initiatives, such as a high-profile Open Problems conference in Combinatorics, a first-time hosting of the EDGE summer program for enhancing graduate education of underrepresented groups, plus more joint seminars between the combinatorics and algebra groups. It will also continue the outreach to Minnesota's regional neighboring institutions, and will serve our high school students by providing enrichment courses to the University of Minnesota Talented Youth Math Program (UMTYMP).The RTG will take advantage of the cross-fertilization between the algebra and combinatorics groups at Minnesota to provide a richer mentoring experience for our undergraduates, graduate students and postdocs. The PIs have by now learned to make their summer REU program not only an exciting and immersive research experience for the undergraduates, but also a laboratory for training our grad students and postdocs in the art of mentorship. The PIs' topics courses (e.g., in representation theory of Hecke algebras, reflection groups, quivers, invariant theory, free resolutions, integrable systems, cluster algebras, total positivity and electrical networks) are designed to introduce a large cross-section of the graduate and postdoc population, along with talented undergraduates, to many of the hottest topics in modern mathematics and physics. Postdocs will be given unique opportunities to teach talented high school students, and graduate students will learn valuable organizational skills in hosting the annual Graduate Student Combinatorics Conference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个在明尼苏达大学的RTG是三个PI之间的合作努力在组合学和两个代数。 由这些PI监督的许多本科生,博士生和博士后需要在PI的研究计划中共同的现代数学领域进行广泛的培训,如表示论,代数几何,拓扑学和数学物理。 除了继续之前的RTG在组合学中最成功的功能,如强大和不断增长的夏季REU计划,目前的赠款将资助令人兴奋的新举措,如高调的组合学开放问题会议,首次举办EDGE夏季计划,以加强代表性不足的群体的研究生教育,以及组合学和代数组之间的更多联合研讨会。 它还将继续推广到明尼苏达州的区域邻近机构,并将通过提供丰富的课程,明尼苏达大学天才青年数学计划(UMTYMP)为我们的高中学生服务。RTG将利用明尼苏达州代数和组合学小组之间的交叉施肥,为我们的本科生,研究生和博士后提供更丰富的指导经验。 PI现在已经学会了使他们的夏季REU计划不仅为本科生提供令人兴奋和身临其境的研究体验,而且还为培训我们的研究生和博士后提供指导艺术的实验室。 PI的主题课程(例如,在Hecke代数的表示论中,反射群,箭图,不变理论,自由分解,可积系统,簇代数,全正性和电网络)旨在向研究生和博士后人口,沿着有才华的本科生,介绍现代数学和物理学中许多最热门的话题。博士后将获得独特的机会,教有才华的高中生,研究生将学习宝贵的组织技能,在主办年度研究生组合学会议。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cyclic Sieving for cyclic codes
循环码的循环筛选
- DOI:10.1016/j.ffa.2021.101846
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Mason, Alex;Reiner, Victor;Sridhar, Shruthi
- 通讯作者:Sridhar, Shruthi
Equivariant Kazhdan–Lusztig theory of paving matroids
- DOI:10.5802/alco.281
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Trevor K. Karn;George D. Nasr;N. Proudfoot;Lorenzo Vecchi
- 通讯作者:Trevor K. Karn;George D. Nasr;N. Proudfoot;Lorenzo Vecchi
Double dimer covers on snake graphs from super cluster expansions
双二聚体覆盖了超级簇扩展的蛇形图
- DOI:10.1016/j.jalgebra.2022.05.033
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Musiker, Gregg;Ovenhouse, Nicholas;Zhang, Sylvester W.
- 通讯作者:Zhang, Sylvester W.
Matrix formulae for decorated super Teichmüller spaces
装饰超级 Teichmüller 空间的矩阵公式
- DOI:10.1016/j.geomphys.2023.104828
- 发表时间:2023
- 期刊:
- 影响因子:1.5
- 作者:Musiker, Gregg;Ovenhouse, Nicholas;Zhang, Sylvester W.
- 通讯作者:Zhang, Sylvester W.
An Expansion Formula for Decorated Super-Teichmüller Spaces
装饰超级 Teichmüller 空间的扩展公式
- DOI:10.3842/sigma.2021.080
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Musiker, Gregg;Ovenhouse, Nicholas;Zhang, Sylvester W.
- 通讯作者:Zhang, Sylvester W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Reiner其他文献
Plactification
- DOI:
10.1023/a:1022434000967 - 发表时间:
1995-10-01 - 期刊:
- 影响因子:0.900
- 作者:
Victor Reiner;Mark Shimozono - 通讯作者:
Mark Shimozono
Sandpile groups for cones over trees
树上的锥体沙堆组
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Victor Reiner;Dorian Smith - 通讯作者:
Dorian Smith
Weyl Group $${\varvec{q}}$$ -Kreweras Numbers and Cyclic Sieving
- DOI:
10.1007/s00026-018-0408-y - 发表时间:
2018-11-13 - 期刊:
- 影响因子:0.700
- 作者:
Victor Reiner;Eric Sommers - 通讯作者:
Eric Sommers
Cyclic quasi-symmetric functions
- DOI:
10.1007/s11856-021-2167-4 - 发表时间:
2021-07-02 - 期刊:
- 影响因子:0.800
- 作者:
Ron M. Adin;Ira M. Gessel;Victor Reiner;Yuval Roichman - 通讯作者:
Yuval Roichman
Alternating subgroups of Coxeter groups
- DOI:
10.1016/j.jcta.2007.10.004 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:
- 作者:
Francesco Brenti;Victor Reiner;Yuval Roichman - 通讯作者:
Yuval Roichman
Victor Reiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Reiner', 18)}}的其他基金
Finite Reflection and General Linear Groups
有限反射和一般线性群
- 批准号:
1601961 - 财政年份:2016
- 资助金额:
$ 199.99万 - 项目类别:
Continuing Grant
Schubert varieties: Combinatorics, Computation and Geometry
舒伯特流派:组合学、计算和几何
- 批准号:
0601010 - 财政年份:2006
- 资助金额:
$ 199.99万 - 项目类别:
Continuing Grant
Catalan Structures for Weyl and Coxeter Groups
Weyl 和 Coxeter 群的 Catalan 结构
- 批准号:
0245379 - 财政年份:2003
- 资助金额:
$ 199.99万 - 项目类别:
Continuing Grant
Combinatorics and Topology of Simplicial Complexes
单纯复形的组合学和拓扑
- 批准号:
9877047 - 财政年份:1999
- 资助金额:
$ 199.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9206371 - 财政年份:1992
- 资助金额:
$ 199.99万 - 项目类别:
Fellowship Award
相似海外基金
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Standard Grant
Combinatorics, Algebra, and Geometry of Simplicial Complexes
单纯复形的组合学、代数和几何
- 批准号:
2246399 - 财政年份:2023
- 资助金额:
$ 199.99万 - 项目类别:
Continuing Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
- 批准号:
2246962 - 财政年份:2023
- 资助金额:
$ 199.99万 - 项目类别:
Standard Grant
Conference: 2023 Combinatorial Algebra meets Algebraic Combinatorics (CAAC)
会议:2023 组合代数遇上代数组合 (CAAC)
- 批准号:
2302019 - 财政年份:2023
- 资助金额:
$ 199.99万 - 项目类别:
Standard Grant
Conference: Women in Algebra and Combinatorics. Northeast Conference Celebrating the Association for Women in Mathematics: 50 Years and Counting
会议:代数和组合学中的女性。
- 批准号:
2305413 - 财政年份:2023
- 资助金额:
$ 199.99万 - 项目类别:
Standard Grant
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2022
- 资助金额:
$ 199.99万 - 项目类别:
Discovery Grants Program - Individual
The Algebra, Blueprinted Geometry, and Combinatorics of Matroids
拟阵的代数、蓝图几何和组合学
- 批准号:
2154224 - 财政年份:2022
- 资助金额:
$ 199.99万 - 项目类别:
Standard Grant
Lagrangians from Algebra and Combinatorics
代数和组合学中的拉格朗日量
- 批准号:
EP/V049097/1 - 财政年份:2022
- 资助金额:
$ 199.99万 - 项目类别:
Fellowship