2012 Redbud Geometry/Topology Conference
2012年紫荆花几何/拓扑会议
基本信息
- 批准号:1148724
- 负责人:
- 金额:$ 2.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-11-15 至 2013-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This conference will feature a number of talks by Tao Li and by other experts on Heegaard splittings and ranks of fundamental groups. A Heegaard splitting is a decomposition of a 3-dimensional manifold into two simple pieces called handlebodies along a surface. A Heegaard splitting defines a presentation for the fundamental group of the 3-manifold in which the number of generators is equal to the genus of the surface. Thus the rank of the 3-manifold (the minimal number of generators) is less than or equal to the genus of the minimal Heegaard surface. In most cases, rank and genus are equal, but a small number of examples have been found in which the rank is strictly less than the genus. Tao Li recently discovered the first examples of hyperbolic 3-manifolds with rank strictly less than genus. This raises the question of how common these examples are and how big the difference between rank and genus can be.When we look at the surface of the earth from ground level, it appears to be a flat plane that goes on forever in all directions. However, from world navigation and viewing the earth from space, we know that it is, in fact, a completely different shape - a sphere, or the surface of a ball. Similarly, the universe that we live in appears to be a flat 3-dimensional space that goes on forever in all directions. Unfortunately we have no way of checking what the shape actually is, but we can study the possible shapes that it could be. This is the focus of 3-dimensional topology. This conference will bring together experts from around the world to discuss recent developments at the interface between algebraic methods and geometric methods for studying 3-dimensional spaces.http://comp.uark.edu/~matthewd/redbud/http://www.math.okstate.edu/~jjohnson/redbud/
这次会议将由陶力和其他专家就希加德的分裂和基本集团的队伍作一系列报告。Heegaard分裂是将三维流形沿着曲面分解成两个简单的称为手柄的部分。Heegaard分裂定义了生成元数等于曲面亏格的3-流形的基本群的表示。因此,3-流形(生成元的最小数目)的秩小于或等于极小Heegaard曲面的亏格。在大多数情况下,等级和亏格是相等的,但也有少数例子表明,等级严格小于亏格。陶力最近发现了第一批秩严格小于亏格的双曲3-流形。这就提出了这样一个问题:这些例子有多常见,等级和属之间的差别有多大。当我们从地面上看地球表面时,它似乎是一个永远向四面八方延伸的平面。然而,从世界导航和从太空观看地球,我们知道它实际上是一个完全不同的形状-球体,或球的表面。同样,我们生活的宇宙似乎是一个平坦的三维空间,向各个方向永无止境。不幸的是,我们无法检查它的实际形状,但我们可以研究它可能的形状。这是三维拓扑学研究的重点。这次会议将汇集来自世界各地的专家,讨论在研究三维spaces.http://comp.uark.edu/~matthewd/redbud/http://www.math.okstate.edu/~jjohnson/redbud/的代数方法和几何方法之间的接口的最新进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesse Johnson其他文献
Topological Data Analysis and Machine Learning Theory
拓扑数据分析和机器学习理论
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
G. Carlsson;Rick Jardine;Dmitry Feichtner;D. Morozov;D. Attali;A. Bak;M. Belkin;Peter Bubenik;Brittany Terese Fasy;Jesse Johnson;Matthew Kahle;Gilad Lerman;Sayan Mukherjee;Monica Nicolau;A. Patel;Yusu Wang - 通讯作者:
Yusu Wang
Acute heart failure within 10 days of dual-chamber pacemaker implantation: A novel etiology
双腔起搏器植入后 10 天内急性心力衰竭:一种新的病因
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0.6
- 作者:
J. Noto;Jesse Johnson;S. Longo;S. Nanda - 通讯作者:
S. Nanda
An application of topological graph clustering to protein function prediction
拓扑图聚类在蛋白质功能预测中的应用
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
R. S. Bowman;Douglas R. Heisterkamp;Jesse Johnson;Danielle O'Donnol - 通讯作者:
Danielle O'Donnol
Classifying and Using Polynomials as Maps of the Field F_{p^d}s
分类并使用多项式作为域 F_{p^d}s 的映射
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
D. Cutler;Jesse Johnson;Ben Rosenfield;Kudzai Zvoma - 通讯作者:
Kudzai Zvoma
Modeling long-term stability of the Ferrar Glacier, East Antarctica: Implications for interpreting cosmogenic nuclide inheritance
东南极洲费拉尔冰川长期稳定性建模:对解释宇宙成因核素遗传的影响
- DOI:
10.1029/2006jf000599 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jesse Johnson;J. Staiger - 通讯作者:
J. Staiger
Jesse Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesse Johnson', 18)}}的其他基金
RII Track-2 FEC: Natural Resource Supply Chain Optimization using Aerial Imagery Interpreted with Machine Learning Methods
RII Track-2 FEC:使用机器学习方法解释的航空图像优化自然资源供应链
- 批准号:
2119689 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Cooperative Agreement
Collaborative Research: GRate – Integrating data and modeling to quantify rates of Greenland Ice Sheet change, Holocene to future
合作研究:GRate — 整合数据和模型来量化格陵兰冰盖变化率、全新世到未来
- 批准号:
2107605 - 财政年份:2021
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Collaborative Research: Stability and Dynamics of Antarctic Marine Outlet Glaciers
合作研究:南极海洋出口冰川的稳定性和动力学
- 批准号:
1543533 - 财政年份:2016
- 资助金额:
$ 2.56万 - 项目类别:
Continuing Grant
Collaborative Research: Ice sheet sensitivity in a changing Arctic system - using geologic data and modeling to test the stable Greenland Ice Sheet hypothesis
合作研究:不断变化的北极系统中的冰盖敏感性 - 使用地质数据和建模来检验稳定的格陵兰冰盖假说
- 批准号:
1504457 - 财政年份:2015
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Collaborative Research: The Land Unknown: Assessing Data Requirements for Modeling Change in the Antarctic Ice Sheet with an Emphasis on the Subglacial Bed
合作研究:未知的土地:评估南极冰盖变化建模的数据要求,重点关注冰下床
- 批准号:
1347560 - 财政年份:2013
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Collaborative Research: The Land Unknown: Assessing Data Requirements for Modeling Change in the Antarctic Ice Sheet with an Emphasis on the Subglacial Bed
合作研究:未知的土地:评估南极冰盖变化建模的数据要求,重点关注冰下床
- 批准号:
1142165 - 财政年份:2012
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
The Geometry and Topology of Heegaard Splittings
Heegaard 分裂的几何和拓扑
- 批准号:
1006369 - 财政年份:2010
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model's adjoint to support sea level change assessment
CMG 合作研究:利用大规模高阶冰盖模型的伴随物进行冰盖敏感性和稳定性分析,以支持海平面变化评估
- 批准号:
0934662 - 财政年份:2009
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Modelfor Scientists and Educators
合作研究:IPY,下一代:科学家和教育工作者的社区冰盖模型
- 批准号:
0632161 - 财政年份:2007
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
相似海外基金
Conference: 2024 Redbud Topology Conference
会议:2024紫荆花拓扑会议
- 批准号:
2405684 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Conference: 2023 Redbud Topology Conference
会议:2023紫荆花拓扑会议
- 批准号:
2247414 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
2020 Redbud Geometry/Topology Conference
2020紫荆花几何/拓扑会议
- 批准号:
1953775 - 财政年份:2020
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
2019 Redbud Geometry/Topology Conference
2019紫荆花几何/拓扑会议
- 批准号:
1856678 - 财政年份:2019
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
2018 Redbud Geometry/Topology Conference
2018紫荆花几何/拓扑会议
- 批准号:
1806896 - 财政年份:2018
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
2017 Redbud Geometry/Topology Conference
2017紫荆花几何/拓扑会议
- 批准号:
1702102 - 财政年份:2017
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
2016 Redbud Geometry/Topology Conference
2016紫荆花几何/拓扑会议
- 批准号:
1561868 - 财政年份:2016
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
2015 Redbud Geometry/Topology Conference
2015紫荆花几何/拓扑会议
- 批准号:
1463957 - 财政年份:2015
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
2014 Redbud Geometry/Topology Conference, April 11-13, 2014
2014紫荆花几何/拓扑会议,2014年4月11-13日
- 批准号:
1419391 - 财政年份:2014
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
2013 Redbud Geometry/Topology Conferences
2013年紫荆花几何/拓扑会议
- 批准号:
1322142 - 财政年份:2013
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant