The Geometry and Topology of Heegaard Splittings
Heegaard 分裂的几何和拓扑
基本信息
- 批准号:1006369
- 负责人:
- 金额:$ 11.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal objective of this project is to develop new methods that will produce a unified and systematic approach to understanding and classifying isotopy classes of Heegaard splittings in 3-manifolds. In addition to strengthening the foundations of the field, such an approach will lead to new results, as well as opening up the field to a wider audience. The new approach uses geometric intuition from recent results connecting Heegaard splittings to hyperbolic geometry in order to expand and clarify two existing methods: thin position and double sweep-outs/graphics. The PI has recently made significant breakthroughs in understanding and expanding these methods in this direction and proposes to further explore their potential applications.Since their introduction in the early 1900s, Heegaard splittings have been a vital tool for placing 3-manifolds in an accessible context. They provide a good introduction to geometric topology and an active area of research for young mathematicians. Right now, the core of the theory of Heegaard splittings is appropriate for beginning graduate students. However, new research continues to provide simpler proofs of the main theorems and more intuitive approaches to the fundamental concepts, so that parts of the field are becoming accessible to advanced undergraduates. The research project described here will eventually lead to problems that are appropriate for an undergraduate thesis or even an REU. This will provide a gateway for students into other areas of algebraic and geometric topology. It should be noted that OSU has a substantial population of Native American and other underserved minorities, and Oklahoma is geographically isolated from the academic centers of the country. Through involvement in the PI's research, mathematically talented students at OSU will have the opportunity to develop their talents, increase their visibility and confidence and prepare themselves for further success in mathematics and science.
该项目的主要目标是开发新的方法,以产生统一和系统的方法来理解和分类3流形中的heegard分裂的同位素类别。除了加强该领域的基础外,这种方法还将产生新的结果,并向更广泛的受众开放该领域。新方法使用了最近将Heegaard分裂与双曲几何连接起来的几何直觉,以扩展和澄清两种现有方法:薄位置和双重扫描/图形。PI最近在理解和扩展这些方法方面取得了重大突破,并建议进一步探索它们的潜在应用。自20世纪初引入以来,heegard分裂一直是将3-流形置于可访问环境中的重要工具。它们为年轻的数学家提供了一个很好的几何拓扑介绍和一个活跃的研究领域。现在,heegard分裂理论的核心是适合刚开始的研究生。然而,新的研究继续为主要定理提供更简单的证明和更直观的基本概念方法,因此该领域的部分内容对高级本科生来说是可以接触到的。这里描述的研究项目最终将导致适合本科论文甚至REU的问题。这将为学生进入代数和几何拓扑的其他领域提供一个入口。值得注意的是,俄勒冈州立大学有大量的印第安人和其他得不到充分服务的少数民族,而俄克拉何马州在地理上与全国的学术中心隔绝。通过参与PI的研究,俄勒冈州立大学的数学天才学生将有机会发展他们的才能,增加他们的知名度和信心,并为他们在数学和科学方面的进一步成功做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesse Johnson其他文献
Topological Data Analysis and Machine Learning Theory
拓扑数据分析和机器学习理论
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
G. Carlsson;Rick Jardine;Dmitry Feichtner;D. Morozov;D. Attali;A. Bak;M. Belkin;Peter Bubenik;Brittany Terese Fasy;Jesse Johnson;Matthew Kahle;Gilad Lerman;Sayan Mukherjee;Monica Nicolau;A. Patel;Yusu Wang - 通讯作者:
Yusu Wang
Acute heart failure within 10 days of dual-chamber pacemaker implantation: A novel etiology
双腔起搏器植入后 10 天内急性心力衰竭:一种新的病因
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0.6
- 作者:
J. Noto;Jesse Johnson;S. Longo;S. Nanda - 通讯作者:
S. Nanda
An application of topological graph clustering to protein function prediction
拓扑图聚类在蛋白质功能预测中的应用
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
R. S. Bowman;Douglas R. Heisterkamp;Jesse Johnson;Danielle O'Donnol - 通讯作者:
Danielle O'Donnol
Classifying and Using Polynomials as Maps of the Field F_{p^d}s
分类并使用多项式作为域 F_{p^d}s 的映射
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
D. Cutler;Jesse Johnson;Ben Rosenfield;Kudzai Zvoma - 通讯作者:
Kudzai Zvoma
Modeling long-term stability of the Ferrar Glacier, East Antarctica: Implications for interpreting cosmogenic nuclide inheritance
东南极洲费拉尔冰川长期稳定性建模:对解释宇宙成因核素遗传的影响
- DOI:
10.1029/2006jf000599 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jesse Johnson;J. Staiger - 通讯作者:
J. Staiger
Jesse Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesse Johnson', 18)}}的其他基金
RII Track-2 FEC: Natural Resource Supply Chain Optimization using Aerial Imagery Interpreted with Machine Learning Methods
RII Track-2 FEC:使用机器学习方法解释的航空图像优化自然资源供应链
- 批准号:
2119689 - 财政年份:2022
- 资助金额:
$ 11.64万 - 项目类别:
Cooperative Agreement
Collaborative Research: GRate – Integrating data and modeling to quantify rates of Greenland Ice Sheet change, Holocene to future
合作研究:GRate — 整合数据和模型来量化格陵兰冰盖变化率、全新世到未来
- 批准号:
2107605 - 财政年份:2021
- 资助金额:
$ 11.64万 - 项目类别:
Standard Grant
Collaborative Research: Stability and Dynamics of Antarctic Marine Outlet Glaciers
合作研究:南极海洋出口冰川的稳定性和动力学
- 批准号:
1543533 - 财政年份:2016
- 资助金额:
$ 11.64万 - 项目类别:
Continuing Grant
Collaborative Research: Ice sheet sensitivity in a changing Arctic system - using geologic data and modeling to test the stable Greenland Ice Sheet hypothesis
合作研究:不断变化的北极系统中的冰盖敏感性 - 使用地质数据和建模来检验稳定的格陵兰冰盖假说
- 批准号:
1504457 - 财政年份:2015
- 资助金额:
$ 11.64万 - 项目类别:
Standard Grant
Collaborative Research: The Land Unknown: Assessing Data Requirements for Modeling Change in the Antarctic Ice Sheet with an Emphasis on the Subglacial Bed
合作研究:未知的土地:评估南极冰盖变化建模的数据要求,重点关注冰下床
- 批准号:
1347560 - 财政年份:2013
- 资助金额:
$ 11.64万 - 项目类别:
Standard Grant
Collaborative Research: The Land Unknown: Assessing Data Requirements for Modeling Change in the Antarctic Ice Sheet with an Emphasis on the Subglacial Bed
合作研究:未知的土地:评估南极冰盖变化建模的数据要求,重点关注冰下床
- 批准号:
1142165 - 财政年份:2012
- 资助金额:
$ 11.64万 - 项目类别:
Standard Grant
2012 Redbud Geometry/Topology Conference
2012年紫荆花几何/拓扑会议
- 批准号:
1148724 - 财政年份:2011
- 资助金额:
$ 11.64万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model's adjoint to support sea level change assessment
CMG 合作研究:利用大规模高阶冰盖模型的伴随物进行冰盖敏感性和稳定性分析,以支持海平面变化评估
- 批准号:
0934662 - 财政年份:2009
- 资助金额:
$ 11.64万 - 项目类别:
Standard Grant
Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Modelfor Scientists and Educators
合作研究:IPY,下一代:科学家和教育工作者的社区冰盖模型
- 批准号:
0632161 - 财政年份:2007
- 资助金额:
$ 11.64万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
2237131 - 财政年份:2023
- 资助金额:
$ 11.64万 - 项目类别:
Continuing Grant
MPS-Ascend: Topics in Low-Dimensional Topology and Heegaard Floer Theory
MPS-Ascend:低维拓扑和 Heegaard Floer 理论主题
- 批准号:
2213027 - 财政年份:2022
- 资助金额:
$ 11.64万 - 项目类别:
Fellowship Award
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 11.64万 - 项目类别:
Continuing Grant
Heegaard Splitting and Topology of 3-Manifolds
三流形的 Heegaard 分裂和拓扑
- 批准号:
1906235 - 财政年份:2019
- 资助金额:
$ 11.64万 - 项目类别:
Continuing Grant
Heegaard Floer Homology and Low-Dimensional Topology
Heegaard Floer 同调和低维拓扑
- 批准号:
1811900 - 财政年份:2018
- 资助金额:
$ 11.64万 - 项目类别:
Continuing Grant
Extensions of Heegaard Floer Homology and Applications to Topology
Heegaard Floer 同调的扩展及其在拓扑中的应用
- 批准号:
1711100 - 财政年份:2017
- 资助金额:
$ 11.64万 - 项目类别:
Standard Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
1552285 - 财政年份:2016
- 资助金额:
$ 11.64万 - 项目类别:
Continuing Grant
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
- 批准号:
1607374 - 财政年份:2016
- 资助金额:
$ 11.64万 - 项目类别:
Continuing Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
1252992 - 财政年份:2013
- 资助金额:
$ 11.64万 - 项目类别:
Continuing Grant
Noncommutative and Heegaard Floer Methods in Low-Dimensional Topology
低维拓扑中的非交换和 Heegaard Florer 方法
- 批准号:
1309070 - 财政年份:2013
- 资助金额:
$ 11.64万 - 项目类别:
Continuing Grant