EAGER: Automatic Reconstruction of Typed Input from Compromising Reflections

EAGER:从妥协的反射中自动重建键入的输入

基本信息

项目摘要

This project explores computer vision techniques aimed at exploiting compromising reflections associated with data input in mobile electronic devices such as smart phones. The ubiquity of these personal communication devices and their growing roles in data manipulation tasks, make unintended visual emanations an exploitable liability to data security. Nevertheless, there is still a gap in understanding of both the limitations of these techniques as well as the availability of effective mitigation mechanisms. It is the goal of this work to contribute to filling this conceptual gap.The study builds upon recent state of the art techniques for automatic reconstruction of typed input from compromising reflections, comprising of robust keystroke event detection and classification mechanisms coupled to natural language processing modules. Such paradigm is both effective and amenable to low cost implementation in commodity devices. Based on these new developments, threat scenarios are no longer restricted to controlled scenarios using specialized equipment, but rather consist of highly flexible and possibly impromptu attacks. The project develops advanced cross-platform data input transcription prototypes used within a threat validation framework. This framework provides a characterization of both threat scenario operational limitations (e.g., imaging resolution, scene illumination, computational requirements) as well as the performance characteristics (e.g., robustness, accuracy) of the different vulnerability exploitation mechanisms. Moreover, the results of the analysis of diverse threat scenarios are being used to identify and develop appropriate mitigation mechanisms when possible.
该项目探索计算机视觉技术,旨在利用与智能手机等移动的电子设备中的数据输入相关的损害反射。 这些个人通信设备的普遍存在及其在数据操作任务中日益增长的作用,使非预期的视觉辐射成为数据安全的可利用责任。然而,在理解这些技术的局限性以及有效缓解机制的可用性方面仍然存在差距。这是这项工作的目标,有助于填补这一概念gap.The研究建立在最近的最先进的技术,自动重建类型的输入从妥协的反射,包括强大的事件检测和分类机制耦合到自然语言处理模块。这样的范例既有效又适合于在商品设备中的低成本实现。基于这些新的发展,威胁情景不再局限于使用专门设备的受控情景,而是包括高度灵活和可能的即兴攻击。该项目开发了在威胁验证框架内使用的高级跨平台数据输入转录原型。该框架提供了威胁场景操作限制(例如,成像分辨率、场景照明、计算要求)以及性能特性(例如,鲁棒性、准确性)。此外,正在利用对各种威胁情况的分析结果,尽可能确定和制定适当的缓解机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan-Michael Frahm其他文献

Modeling and Recognition of Landmark Image Collections Using Iconic Scene Graphs
  • DOI:
    10.1007/s11263-011-0445-z
  • 发表时间:
    2011-04-16
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Rahul Raguram;Changchang Wu;Jan-Michael Frahm;Svetlana Lazebnik
  • 通讯作者:
    Svetlana Lazebnik
Maximum likelihood autocalibration
  • DOI:
    10.1016/j.imavis.2011.07.003
  • 发表时间:
    2011-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stuart B. Heinrich;Wesley E. Snyder;Jan-Michael Frahm
  • 通讯作者:
    Jan-Michael Frahm

Jan-Michael Frahm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan-Michael Frahm', 18)}}的其他基金

EAGER: Leveraging 3D structure estimates for photo collection based geo-localization and semantic indexing
EAGER:利用 3D 结构估计进行基于照片收集的地理定位和语义索引
  • 批准号:
    1349074
  • 财政年份:
    2013
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Standard Grant
EAGER: Data Association and Exploitation for Large Scale 3D Modeling from Visual Imagery
EAGER:视觉图像大规模 3D 建模的数据关联和开发
  • 批准号:
    1252921
  • 财政年份:
    2012
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Standard Grant
RI: Small: Modeling and Recognition of Landmarks and Urban Environments
RI:小型:地标和城市环境的建模和识别
  • 批准号:
    0916829
  • 财政年份:
    2009
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Standard Grant

相似海外基金

Automatic optimization of deep learning models and reconstruction of training data for microscopic image processing
深度学习模型的自动优化和显微图像处理训练数据的重建
  • 批准号:
    22K12270
  • 财政年份:
    2022
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2020
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Discovery Grants Program - Individual
SBIR Phase I: Automatic Reconstruction of As-is Building Information Model from Indoor Point Cloud Data for Planning Purposes
SBIR 第一阶段:出于规划目的从室内点云数据自动重建原样建筑信息模型
  • 批准号:
    1942348
  • 财政年份:
    2020
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Standard Grant
Development of an automatic generation system for the most efficient otoacoustic ossicle replacement component in middle ear reconstruction
开发中耳重建中最有效的耳声听小骨替代组件的自动生成系统
  • 批准号:
    20K04230
  • 财政年份:
    2020
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2019
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2018
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Discovery Grants Program - Individual
Development of intelligent earth observation system based on incomplete data reconstruction and automatic selection of training samples
基于不完全数据重构和训练样本自动选择的智能对地观测系统开发
  • 批准号:
    18K18067
  • 财政年份:
    2018
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2017
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Discovery Grants Program - Individual
SBIR Phase II: Automatic Vascular Flow Reconstruction with Adaptive Three-Dimensional Doppler Ultrasound
SBIR 第二阶段:利用自适应三维多普勒超声自动重建血管血流
  • 批准号:
    1632424
  • 财政年份:
    2016
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Standard Grant
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2016
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了