Rapid and Automatic Reconstruction of Large-scale Areas

大范围区域快速自动重建

基本信息

  • 批准号:
    RGPIN-2016-06689
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

In recent years there has been an increasing demand for realistic virtual worlds representing large-scale, real-world areas comprising of terrain, buildings, trees, cars, etc. Many successful applications employing such realistic virtual representations have already been reported including advanced disaster management simulations for the training of emergency response personnel, visualizing new structures in-situ prior to construction for urban planning and development, and computer games where the storyline takes place in an actual rather than fictional location. For example Ubisoft's "Assassin's Creed" contains numerous cultural heritage sites [albeit some of them not in perfect condition], such as the Hagia Sophia, the Galata tower, the castles in Kyrenia and Limassol, etc.******However, despite the large volume of work in the area many challenges still remain. Currently, the creation of realistic large-scale 3D content remains a complex, time-consuming, expensive and labor-intensive task. In fact, the creation of models is still widely viewed as a specialized art, requiring personnel with extensive training and experience to produce useful models. Fundamental research is essential in order to bridge the gap between the current state-of-the-art and the ultimate goal of rapid and automatic creation of large-scale areas.****This proposal addresses the current technological difficulties of rapid and automatic reconstruction of large scale areas and seeks solutions for the development of accurate, robust and scalable methods and systems for processing the big data captured by active and passive sensors in order to produce a realistic virtual representation. More specifically the research program proposes further study and development of novel and robust algorithms for accurately detecting and extracting:***(a) structural information from data captured from passive and active remote sensors i.e. aerial/satellite images and LiDAR, and reconstructing the geometry of the terrain, buildings, cars and tree models representing the acquired area,***(b) appearance information from imagery captured from ground, oblique-aerial and satellite sensors, and fusing this information into realistic composite texture atlases of the 3D models.******This research program is expected to make substantial contributions to the solution of complex problems of high practical relevance to the field of realistic virtual world creation. It will also contribute to the development of innovative methods in the general fields of computer vision, computer graphics and computer games.**
近年来,对代表由地形、建筑物、树木、汽车等组成的大规模真实世界区域的真实虚拟世界的需求不断增加。已经报道了许多采用这种真实虚拟表示的成功应用,包括用于培训应急响应人员的高级灾害管理模拟、在城市规划和开发建设之前现场可视化新结构,以及故事情节发生在真实而非虚构地点的计算机游戏。例如,育碧的《刺客信条》包含了众多文化遗产(尽管其中一些保存状况并不完美),例如圣索菲亚大教堂、加拉塔塔、凯里尼亚和利马索尔的城堡等。 *****然而,尽管该地区的工作量很大,但仍然存在许多挑战。目前,创建逼真的大型 3D 内容仍然是一项复杂、耗时、昂贵且劳动密集型的任务。事实上,模型的创建仍然被广泛视为一门专门的艺术,需要经过广泛培训和经验丰富的人员来制作有用的模型。为了弥合当前最先进技术与快速自动创建大规模区域的最终目标之间的差距,基础研究至关重要。****该提案解决了当前快速自动重建大规模区域的技术难题,并寻求开发准确、稳健和可扩展的方法和系统的解决方案,用于处理主动和被动传感器捕获的大数据,以产生逼真的虚拟表示。更具体地说,该研究计划建议进一步研究和开发新颖而强大的算法,以准确检测和提取:***(a)从无源和有源遥感器(即航空/卫星图像和激光雷达)捕获的数据中获取结构信息,并重建代表所获取区域的地形、建筑物、汽车和树木模型的几何形状,***(b)从地面、斜空和地面捕获的图像中获取外观信息 卫星传感器,并将这些信息融合到 3D 模型的真实复合纹理图集中。*****该研究计划预计将为解决与真实虚拟世界创建领域具有高度实际相关性的复杂问题做出重大贡献。它还将有助于计算机视觉、计算机图形和计算机游戏等一般领域创新方法的发展。 **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Poullis, Charalambos其他文献

Poullis, Charalambos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Poullis, Charalambos', 18)}}的其他基金

Semantic Segmentation in Geospatial Computer Vision
地理空间计算机视觉中的语义分割
  • 批准号:
    RGPIN-2021-03479
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
ACESO: Computer Vision Algorithms for Computer-Assisted Surgical Systems
ACESO:计算机辅助手术系统的计算机视觉算法
  • 批准号:
    567101-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Alliance Grants
Semantic Segmentation in Geospatial Computer Vision
地理空间计算机视觉中的语义分割
  • 批准号:
    RGPIN-2021-03479
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
DEADALUS: Massive-scale urban reconstuction, classification, and rendering from remote sensor imagery
DEADALUS:大规模城市重建、分类和遥感图像渲染
  • 批准号:
    515566-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Department of National Defence / NSERC Research Partnership
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Automatic optimization of deep learning models and reconstruction of training data for microscopic image processing
深度学习模型的自动优化和显微图像处理训练数据的重建
  • 批准号:
    22K12270
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
SBIR Phase I: Automatic Reconstruction of As-is Building Information Model from Indoor Point Cloud Data for Planning Purposes
SBIR 第一阶段:出于规划目的从室内点云数据自动重建原样建筑信息模型
  • 批准号:
    1942348
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Development of an automatic generation system for the most efficient otoacoustic ossicle replacement component in middle ear reconstruction
开发中耳重建中最有效的耳声听小骨替代组件的自动生成系统
  • 批准号:
    20K04230
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Development of intelligent earth observation system based on incomplete data reconstruction and automatic selection of training samples
基于不完全数据重构和训练样本自动选择的智能对地观测系统开发
  • 批准号:
    18K18067
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
SBIR Phase II: Automatic Vascular Flow Reconstruction with Adaptive Three-Dimensional Doppler Ultrasound
SBIR 第二阶段:利用自适应三维多普勒超声自动重建血管血流
  • 批准号:
    1632424
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Rapid and Automatic Reconstruction of Large-scale Areas
大范围区域快速自动重建
  • 批准号:
    RGPIN-2016-06689
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing structural-functional modelling of root growth and root-soilinteractions based on automatic reconstruction of root systems fromMRI
基于 MRI 根系自动重建,推进根系生长和根系-土壤相互作用的结构功能建模
  • 批准号:
    274830790
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了