CAREER: Enhanced Pyroelectric and Electrocaloric Effects in Complex Oxide Thin Film Heterostructures

职业:复合氧化物薄膜异质结构中增强的热电和电热效应

基本信息

  • 批准号:
    1149062
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: Advances in the development of functional complex oxide materials have enabled many of the devices that are utilized on a daily basis from memories to actuators and beyond. This project is developing a deeper understanding of electro-thermal responses of materials and finding routes to enhance those effects to enable advanced thermal imaging (e.g., night-vision systems), waste-heat energy conversion for energy efficiency, novel electron emission for high-tech applications, and low-power solid-state cooling for nanoelectronics. This project is developing a design algorithm by which researchers can enhance the electric-field and temperature-dependent response of materials for such applications. Possible applications range from communications to data storage to logic to sensing devices. Fundamental research in these fields fosters the United States innovation in the growing green economy and high-technology spaces. The project includes research on the creation of new and complex materials, computational and theoretical approaches to materials design and optimization, and advanced characterization of materials properties. The project also promotes discovery and understanding at the K-12/undergraduate/graduate education levels by introducing students to advanced functional materials and broadening the participation (through personal interaction and recruitment) of underrepresented student groups in science and engineering careers.TECHNICAL DETAILS: This project provides the one of the first studies of so-called magneto-electro-caloric and pyro-electric-magnetic effects, which make use of coupled order parameters in multiferroic/magneto-electrics. Additionally, the project is investigating frustrated ferroelectric order which should provide for large entropic changes with applied fields. The research project combines advances in phenomenological models, cutting-edge thin-film growth techniques (including pulsed-laser deposition and molecular beam epitaxy), and modern characterization techniques to develop a deeper understanding of the physics and thermodynamics of thermo-electrical responses (i.e., pyroelectric and electrocaloric effects) in complex oxide materials. This project is providing new insight into the underlying mechanisms of such thermo-electrical responses and seeking pathways to manipulate and control the temperature- and field-dependence of entropic changes in ferroic oxides. The overall goal of the project is to further the fundamental understanding of these effects, to develop predictive capabilities for responses in thin-film systems, and to probe the properties and ultimate performance of these materials to enable their use in devices. As part of this project, the researchers are creating and characterizing high-quality, heteroepitaxial, thin-film heterostructures and nanostructures of complex oxide materials and in turn, are investigating innovative approaches to enhance thermo-electrical responses in materials by exploring the temperature- and field-dependence of entropy in modern materials. The project is also providing fundamental insight into the physics of these effects by developing novel Ginzburg-Landau-Devonshire models of these thermodynamic properties that include effects from domain walls, polydomain structures, layered heterostructures, strain and composition gradients, and other features common in films. Finally, the project seeks to identify and overcome inadequacies in characterization of such properties, including the utilization of new techniques to provide the first direct measurement of such effects in thin films.
非技术描述:功能复杂氧化物材料的发展进步,使许多日常使用的设备成为可能,从存储器到执行器等等。该项目正在深入了解材料的电热响应,并寻找增强这些效应的途径,以实现先进的热成像(例如,夜视系统),废热能量转换以提高能源效率,高科技应用的新型电子发射,以及纳米电子的低功耗固态冷却。该项目正在开发一种设计算法,通过该算法,研究人员可以增强用于此类应用的材料的电场和温度相关响应。可能的应用范围从通信到数据存储,从逻辑到传感设备。这些领域的基础研究促进了美国在日益增长的绿色经济和高科技领域的创新。该项目包括研究新材料和复杂材料的创造,材料设计和优化的计算和理论方法,以及材料性能的高级表征。该项目还通过向学生介绍先进的功能材料和扩大(通过个人互动和招聘)代表性不足的学生群体在科学和工程职业中的参与,促进K-12/本科/研究生教育水平的发现和理解。技术细节:该项目提供了所谓的磁电热效应和热电磁效应的第一个研究之一,这些效应利用了多铁/磁电中的耦合顺序参数。此外,该项目正在研究受挫铁电序,这将提供大的熵变化与应用领域。该研究项目结合了现象学模型、尖端薄膜生长技术(包括脉冲激光沉积和分子束外延)和现代表征技术的进展,以加深对复杂氧化物材料中热电响应(即热释电和电热效应)的物理和热力学的理解。该项目为这种热电响应的潜在机制提供了新的见解,并寻求操纵和控制铁氧化物中熵变化的温度和场依赖性的途径。该项目的总体目标是进一步加深对这些效应的基本理解,开发薄膜系统响应的预测能力,并探索这些材料的特性和最终性能,使其能够在设备中使用。作为该项目的一部分,研究人员正在创建和表征复杂氧化物材料的高质量,异质外延,薄膜异质结构和纳米结构,反过来,通过探索现代材料中熵的温度和场依赖性来研究提高材料热电响应的创新方法。该项目还通过开发新的Ginzburg-Landau-Devonshire热力学特性模型,包括畴壁、多畴结构、层状异质结构、应变和成分梯度以及薄膜中常见的其他特征,为这些效应的物理学提供了基本的见解。最后,该项目旨在确定和克服这些特性表征方面的不足,包括利用新技术首次直接测量薄膜中的这种效应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lane Martin其他文献

Lane Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lane Martin', 18)}}的其他基金

Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Films
合作研究:铁电氧化物薄膜中持久自旋纹理的设计和演示
  • 批准号:
    2102895
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Beyond Binary: Understanding Multi-State Stability in Ferroelectrics
超越二进制:了解铁电体的多态稳定性
  • 批准号:
    1708615
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemisorption-Induced Ultraviolet Quantum Well Optoelectronic Materials
合作研究:化学吸附诱导的紫外量子阱光电材料
  • 批准号:
    1608938
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Enhanced Pyroelectric and Electrocaloric Effects in Complex Oxide Thin Film Heterostructures
职业:复合氧化物薄膜异质结构中增强的热电和电热效应
  • 批准号:
    1451219
  • 财政年份:
    2014
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似海外基金

SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
  • 批准号:
    2335500
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Enhanced Drug Repositioningを用いた肝硬変合併症に対する同時制御治療法の開発
使用增强药物重新定位开发肝硬化并发症同步控制疗法
  • 批准号:
    24K11137
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
STTR Phase I: Microwave-Enhanced Modular Ammonia Synthesis
STTR 第一阶段:微波增强模块化氨合成
  • 批准号:
    2335104
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
  • 批准号:
    LP220200906
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Linkage Projects
Revolutionary Soft Surfboards - Advanced UK low carbon manufacturing for enhanced durability and 100% recyclability
革命性%20Soft%20冲浪板%20-%20Advanced%20UK%20low%20carbon%20制造%20for%20增强%20耐用性%20和%20100%%20可回收性
  • 批准号:
    10095272
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
ENTICE: Enhanced Ammonia Cracking to Improve Engine Combustion and Emissions
ENTICE:增强氨裂解以改善发动机燃烧和排放
  • 批准号:
    10096979
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
  • 批准号:
    10103109
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    EU-Funded
SENSORBEES: Sensorbees are ENhanced Self-ORganizing Bio-hybrids for Ecological and Environmental Surveillance
传感器蜂:传感器蜂是用于生态和环境监测的增强型自组织生物杂交体
  • 批准号:
    10109956
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了