Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Films
合作研究:铁电氧化物薄膜中持久自旋纹理的设计和演示
基本信息
- 批准号:2102895
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern electronics are based on moving electrons through nanoscale transistors made of semiconductors such as silicon. The exponential growth in computing power has been realized by shrinking the size of transistors and increasing their density. As the dimensions of transistors approach atomic scales, further miniaturization is not possible. An alternative route to computing and information processing exploits spin, an intrinsic property of elementary particles. Spintronics combines electronics with spin, allowing for devices for information processing and storage that have superior energy efficiency and reduced heat-generation. The limiting feature for the field remains transporting spins across nanoscale dimensions in magnetic materials without losing the stored information. This project exploits a relativistic quantum mechanical effect – spin-orbit interaction – along with crystalline symmetries to protect the state of the spin as it travels in non-magnetic materials. The research team will combine experimental work with simulations to realize a new class of thin film oxide materials for spintronics. Teaching and training of students at multiple levels is interwoven throughout the project. The project will broaden STEM participation by underrepresented students through public outreach events, curriculum development, and recruiting students to participate in interdisciplinary experimental research. The educational impact extends to high-school teachers, who will be recruited to participate in research and develop materials physics modules for their classrooms. These efforts will impact the next-generation workforce by endowing students with the problem solving skills needed for future careers in STEM.The desire to identify beyond Moore’s Law devices and technologies has driven increasing attention on a range of alternative computing devices, including using the spin rather than the charge of an electron. The limiting feature for the field of spin-orbit-based electronics is the difficulty in attaining both long-lived and fully controllable spins from conventional semiconductor and magnetic materials. The goal of this project is to design, discover, and demonstrate ferroelectric oxides embodying a symmetry-protected persistent spin texture, which permits information encoded in the spins to be robust to corruption as they propagate. Unique to this project is the use of atomic topology to achieve the novel spin textures in bulk materials with spin-orbit interactions, rather than by delicately balancing multiple, hard to control, interactions through conventional quantum-well structures. The project couples theory, simulation, and comprehensive experimentation with sophisticated thin film oxide growth methods to develop new theories and models for spin textures, identify and synthesize novel ferroelectric oxides exhibiting symmetry-determined spin textures, and explore electric-field tunability of the spin textures. Outcomes of the project include new descriptive and predictive theories for spin textures in complex materials, realization of novel complex transition metal oxide ferroelectrics, and demonstration of spin-based devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代电子学是基于移动电子通过由半导体(如硅)制成的纳米级晶体管。计算能力的指数级增长是通过缩小晶体管的尺寸和增加晶体管的密度实现的。由于晶体管的尺寸接近原子尺度,进一步小型化是不可能的。计算和信息处理的另一种途径是利用基本粒子的固有特性——自旋。自旋电子学将电子学与自旋相结合,使信息处理和存储设备具有更高的能源效率和更少的热量产生。磁场的限制特征仍然是在磁性材料的纳米尺度上传输自旋而不丢失存储的信息。该项目利用了相对论量子力学效应——自旋-轨道相互作用——以及晶体对称性来保护自旋在非磁性材料中传播时的状态。研究小组将实验工作与模拟相结合,以实现一种用于自旋电子学的新型薄膜氧化物材料。在整个项目中,多个层次的学生教学和培训交织在一起。该项目将通过公共宣传活动、课程开发和招募学生参与跨学科实验研究,扩大代表性不足的学生对STEM的参与。教育方面的影响延伸到高中教师,他们将被招募参与研究,并为他们的课堂开发材料物理模块。这些努力将通过赋予学生未来STEM职业所需的解决问题的技能来影响下一代劳动力。人们渴望识别超越摩尔定律的设备和技术,这促使人们越来越多地关注一系列替代计算设备,包括使用自旋而不是电子的电荷。自旋轨道电子学领域的限制特征是难以从传统的半导体和磁性材料中获得长寿命和完全可控的自旋。这个项目的目标是设计、发现和证明铁电氧化物包含一种对称保护的持久自旋结构,这使得自旋中编码的信息在传播过程中对损坏具有鲁棒性。这个项目的独特之处在于使用原子拓扑来实现具有自旋轨道相互作用的体材料中的新型自旋纹理,而不是通过传统的量子阱结构来微妙地平衡多个难以控制的相互作用。该项目将理论、模拟和综合实验与复杂的薄膜氧化物生长方法相结合,以建立新的自旋织构理论和模型,识别和合成具有对称性自旋织构的新型铁电氧化物,并探索自旋织构的电场可调性。该项目的成果包括复杂材料中自旋织构的新的描述和预测理论,新型复杂过渡金属氧化物铁电体的实现,以及基于自旋的器件的演示。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strain‐Induced Orbital Contributions to Oxygen Electrocatalysis in Transition‐Metal Perovskites
应变诱导轨道对转变中氧电催化的贡献金属钙钛矿
- DOI:10.1002/aenm.202102175
- 发表时间:2021
- 期刊:
- 影响因子:27.8
- 作者:Fernandez, Abel;Caretta, Lucas;Das, Sujit;Klewe, Christoph;Lou, Djamila;Parsonnet, Eric;Gao, Ran;Luo, Aileen;Shafer, Padraic;Martin, Lane W.
- 通讯作者:Martin, Lane W.
Freestanding complex-oxide membranes
独立式复合氧化物膜
- DOI:10.1088/1361-648x/ac7dd5
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Pesquera, David;Fernández, Abel;Khestanova, Ekaterina;Martin, Lane W
- 通讯作者:Martin, Lane W
Field-induced heterophase state in PbZrO3 thin films
- DOI:10.1103/physrevb.105.125409
- 发表时间:2022-03
- 期刊:
- 影响因子:3.7
- 作者:R. Burkovsky;G. Lityagin;A. Ganzha;A. Vakulenko;R. Gao;A. Dasgupta;Bin Xu;A. Filimonov;
- 通讯作者:R. Burkovsky;G. Lityagin;A. Ganzha;A. Vakulenko;R. Gao;A. Dasgupta;Bin Xu;A. Filimonov;
Coupled polarization and nanodomain evolution underpins large electromechanical responses in relaxors
- DOI:10.1038/s41567-022-01773-y
- 发表时间:2022-10
- 期刊:
- 影响因子:19.6
- 作者:Jieun Kim;Abinash Kumar;Y. Qi;H. Takenaka;P. Ryan;D. Meyers;Jong-Woo Kim;Abel Fernandez;Z. Tian;A. Rappe;J. Lebeau;L. Martin
- 通讯作者:Jieun Kim;Abinash Kumar;Y. Qi;H. Takenaka;P. Ryan;D. Meyers;Jong-Woo Kim;Abel Fernandez;Z. Tian;A. Rappe;J. Lebeau;L. Martin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lane Martin其他文献
Lane Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lane Martin', 18)}}的其他基金
Beyond Binary: Understanding Multi-State Stability in Ferroelectrics
超越二进制:了解铁电体的多态稳定性
- 批准号:
1708615 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Chemisorption-Induced Ultraviolet Quantum Well Optoelectronic Materials
合作研究:化学吸附诱导的紫外量子阱光电材料
- 批准号:
1608938 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Enhanced Pyroelectric and Electrocaloric Effects in Complex Oxide Thin Film Heterostructures
职业:复合氧化物薄膜异质结构中增强的热电和电热效应
- 批准号:
1451219 - 财政年份:2014
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
CAREER: Enhanced Pyroelectric and Electrocaloric Effects in Complex Oxide Thin Film Heterostructures
职业:复合氧化物薄膜异质结构中增强的热电和电热效应
- 批准号:
1149062 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348641 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335235 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
- 批准号:
2321297 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant














{{item.name}}会员




