CAREER: Quantum Critical Points around Topological Phases
职业:拓扑相的量子临界点
基本信息
- 批准号:1151208
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis CAREER award supports theoretical research and education focused on the study of unconventional quantum critical points around topological order. These quantum critical points are beyond the classic Landau-Ginzburg paradigm, and they carry important and experimentally testable information on the nature of the topological phases. In particular, the PI will pursue the following directions: (1) Understanding the experimental candidates of strongly correlated topological states, for example frustrated spin-1/2 quantum magnets. The PI will identify the nature of the exotic states observed in these materials by studying the phase diagram of these materials under magnetic field, pressure, and other external fields. (2) Investigating the quantum critical points driven by topological defects with nontrivial quantum numbers. In topological states such as a fractional topological insulator, a topological defect usually carries topologically protected quantum numbers such as charge, spin, and anyon statistics. The PI will develop a many-body theory of such topological defects, and understand the universality class and quantum entanglement at the quantum critical points driven by these defects.(3) Exploring unconventional phases and quantum critical points of strongly interacting Dirac fermions. Dirac fermions are related to many topological states such as topological band insulators. The PI will explore the novel physics due to the interplay between the strong interaction and topology of Dirac fermions. For example, the PI will investigate the 5d transition metal oxides with both strong spin-orbit coupling and interaction. This award also supports educational activities. These include developing new courses with emphasis on new techniques in condensed matter theory. The PI will organize group meetings and seminars for students, where the students will not only broaden their scientific disciplines, but also practice their presentation and communication skills. An interactive online Forum will be developed in order to stimulate discussions between students and to evaluate the effectiveness of education. The associated outreach activities include partnerships with a Research Experience for Teachers program, and California Alliance for Minority Participation program which will provide resources and opportunities in scientific research to secondary school teachers and under-represented students. NON-TECHNICAL SUMMARYThis CAREER award supports theoretical research and education programs to study new states of matter called topological states that are exhibited by electrons in materials. An example of a topological state is a topological insulator. Like ordinary insulators, for example rubber, topological insulators do not conduct electricity though the interior of the material. Unlike ordinary insulators, topological insulators are able to conduct electricity on their edges or boundaries through the formation of a new state of matter. Among the known topological insulators are compounds made of the elements bismuth and selenium, and bismuth and tellurium. The PI aims to advance understanding of topological states of matter by investigating the transformations between states of matter than involve topological states. Topological states fundamentally differ from more familiar states of matter like insulators and metallic states. Transformations involving these states do not fit the standard theory of phase transitions. The PI aims to use transformations among states that occur at the absolute zero of temperature called quantum phase transitions to determine the properties of topological states and connect to experiments on materials that exhibit electronic states that are candidates for topological states and to computer simulations on model systems. This research has immediate relevance to materials that are frustrated magnets. In these materials the interactions between fundamental microscopic units of magnetism, the electron spin, cannot be satisfied because of the geometric arrangement of atoms. The PI aims to understand the nature of these unconventional states by comparing the experimentally determined diagram of phases with the PI's theoretical predictions. This award supports educational activities with the goal to improve creativity and innovation in research while students learn basic physics. New courses with emphasis on modern condensed matter theory will be developed. A new online forum will be designed to stimulate discussion, and evaluate teaching effectiveness. The PI will carry out outreach activities that provide research opportunities to secondary school teachers and under-represented students.
该职业奖支持理论研究和教育,重点是围绕拓扑秩序的非常规量子临界点的研究。这些量子临界点超越了经典的朗道-金兹伯格范式,它们携带了关于拓扑相性质的重要和实验可检验的信息。 特别是,PI将追求以下方向:(1)理解强关联拓扑态的实验候选者,例如受抑自旋1/2量子磁体。PI将通过研究这些材料在磁场,压力和其他外部场下的相图来确定在这些材料中观察到的奇异状态的性质。(2)研究具有非平凡量子数的拓扑缺陷驱动的量子临界点。在分数拓扑绝缘体等拓扑态中,拓扑缺陷通常带有拓扑保护的量子数,如电荷、自旋和任意子统计。PI将发展这种拓扑缺陷的多体理论,并理解由这些缺陷驱动的量子临界点处的普适性类和量子纠缠。(3)探讨强相互作用狄拉克费米子的非常规相和量子临界点。狄拉克费米子与许多拓扑态有关,如拓扑带绝缘体。PI将探索由于狄拉克费米子的强相互作用和拓扑结构之间的相互作用而产生的新物理。例如,PI将研究具有强自旋轨道耦合和相互作用的5d过渡金属氧化物。该奖项还支持教育活动。其中包括开发新课程,重点关注凝聚态理论中的新技术。PI将为学生组织小组会议和研讨会,学生不仅可以拓宽他们的科学学科,还可以练习他们的演讲和沟通技巧。将建立一个互动式在线论坛,以促进学生之间的讨论,并评估教育的有效性。相关的推广活动包括与教师研究经验计划和加州少数民族参与计划联盟的伙伴关系,该计划将为中学教师和代表性不足的学生提供科学研究的资源和机会。非技术总结这个职业奖支持理论研究和教育计划,以研究材料中电子所表现出的称为拓扑状态的新物质状态。拓扑状态的一个例子是拓扑绝缘体。像普通的绝缘体一样,例如橡胶,拓扑绝缘体不会通过材料的内部导电。与普通绝缘体不同,拓扑绝缘体能够通过形成新的物质状态在其边缘或边界上导电。在已知的拓扑绝缘体中,有由元素铋和硒以及铋和碲制成的化合物。PI旨在通过研究物质状态之间的转换而不是涉及拓扑状态来促进对物质拓扑状态的理解。 拓扑状态与我们更熟悉的物质状态,如绝缘体和金属状态,有着根本的不同。涉及这些状态的变换不符合标准的相变理论。PI的目的是使用在绝对零度下发生的状态之间的转换,称为量子相变,以确定拓扑状态的属性,并连接到显示电子状态的材料实验,这些电子状态是拓扑状态的候选者,并连接到模型系统的计算机模拟。这项研究与受挫折的磁铁材料有直接的相关性。在这些材料中,由于原子的几何排列,磁性的基本微观单位(电子自旋)之间的相互作用不能得到满足。PI的目的是通过比较实验确定的相图与PI的理论预测来理解这些非常规状态的性质。该奖项支持教育活动,旨在提高学生在学习基础物理学的同时在研究中的创造力和创新能力。将开发以现代凝聚态理论为重点的新课程。将设计一个新的在线论坛,以激发讨论,并评估教学效果。PI将开展外联活动,为中学教师和代表性不足的学生提供研究机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cenke Xu其他文献
Gauge symmetry and non-Abelian topological sectors in a geometrically constrained model on the honeycomb lattice.
蜂窝晶格几何约束模型中的规范对称性和非阿贝尔拓扑扇区。
- DOI:
10.1103/physreve.75.051120 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
P. Fendley;J. Moore;Cenke Xu - 通讯作者:
Cenke Xu
Nonequilibrium charge density wave ordering from anomalous velocity in itinerant helical magnets
流动螺旋磁体中反常速度的非平衡电荷密度波排序
- DOI:
10.1016/j.ssc.2005.03.059 - 发表时间:
2005 - 期刊:
- 影响因子:2.1
- 作者:
Cenke Xu;J. E. Moore - 通讯作者:
J. E. Moore
Bosonic Short Range Entangled states Beyond Group Cohomology classification
玻色子短程纠缠态超越群上同调分类
- DOI:
10.1103/physrevb.91.054406 - 发表时间:
2014 - 期刊:
- 影响因子:3.7
- 作者:
Cenke Xu;Yi - 通讯作者:
Yi
Conformal field theories generated by Chern insulators under decoherence or measurement
陈绝缘体在退相干或测量下产生的共形场论
- DOI:
10.1103/physrevb.109.035146 - 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
Kaixiang Su;Nayan E. Myerson;Cenke Xu - 通讯作者:
Cenke Xu
Deconfined quantum critical point on the triangular lattice
三角晶格上的解禁量子临界点
- DOI:
10.1103/physrevb.97.195115 - 发表时间:
2017 - 期刊:
- 影响因子:3.7
- 作者:
Chao;A. Thomson;Alex Rasmussen;Zhen Bi;Cenke Xu - 通讯作者:
Cenke Xu
Cenke Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cenke Xu', 18)}}的其他基金
Theories for Novel States of Matter Observed and Constructed in Condensed Matter and Cold Atom Systems
在凝聚态物质和冷原子系统中观察和构建的新物质态理论
- 批准号:
1920434 - 财政年份:2019
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
- 批准号:
EP/Y022092/1 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Research Grant
Influence of quantum critical point on depairing current density and critical current density
量子临界点对配对电流密度和临界电流密度的影响
- 批准号:
23KK0073 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
3LX - Developing low-cost, low-energy, low-detection limit X-Ray image sensors for critical industries using quantum dot technology
3LX - 使用量子点技术为关键行业开发低成本、低能耗、低检测限的 X 射线图像传感器
- 批准号:
10077184 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Collaborative R&D
High-energy heavy-ion observables for quantum chromodynamics critical point search
用于量子色动力学临界点搜索的高能重离子可观测量
- 批准号:
23K13102 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
QuantumBlockVault: Post-Quantum Resistant Blockchain for Securing Business-critical Data
QuantumBlockVault:用于保护关键业务数据的后量子区块链
- 批准号:
10078089 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Collaborative R&D
Application of the cluster nonequilibrium relaxation scheme (generalized to quantum systems and off-critical regions) to random systems
簇非平衡弛豫方案(推广到量子系统和非临界区)在随机系统中的应用
- 批准号:
23K03269 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical study on critical properties of topological quantum systems with broken translational symmetry
平动对称性破缺拓扑量子系统临界性质的数值研究
- 批准号:
22K03446 - 财政年份:2022
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of quantum dynamics of vortices and quantum critical phenomena in highly crystalline 2D superconductors
高结晶二维超导体中涡旋量子动力学和量子临界现象的研究
- 批准号:
21H01792 - 财政年份:2021
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)