Finite-amplitude Eddy-mean Flow Interaction in the Extratropical Atmosphere

温带大气中的有限振幅涡均流相互作用

基本信息

  • 批准号:
    1151790
  • 负责人:
  • 金额:
    $ 56.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-02-01 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

The mutual interaction between eddies (such as those associated with midlatitude weather systems) and the mean flow (midlatitude jet streams, in particular) is a longstanding topic in atmospheric general circulation. It is clear that jet streams and eddies interact strongly, but traditional theories to account for their interaction are limited because, for mathematical reasons, they assume that the eddies are small-amplitude perturbations of the mean flow. The Principal Investigator (PI) has developed a theory of eddy-mean flow interaction which works for large-amplitude eddies, and work conducted under the award seeks to explore the implications of this new theory. The new theory will be applied to 1) evaluate nonconservative driving of the climate state (radiative forcing, friction, mixing, etc.) by carefully documenting and analyzing the slowly varying reference state; 2) quantify the stabilizing effects of baroclinic eddies ("baroclinic adjustment") by comparing the linear stability of the observed zonal-mean time-mean state and that of an eddy-free reference state derived from the theory; 3) characterize annular mode variability as co-variation of the zonal-mean zonal-wind and wave activity density, and in turn associate it with the variation in the zonal phase speed and energy of the eddies; 4) generalize the criterion for the onset of Rossby wave breaking and testing this theoretical prediction with numerical simulation and meteorological reanalysis; and 5) further generalize the wave breaking criterion for zonally varying mean flows.The broader impacts of this activity are that the eddy-mean flow theory and the diagonstic tools derived from it can be applied to a wide class of flows, including the stratosphere, troposphere, and the oceans. In addition, the project will support and train two graduate students, thereby developing the scientific workforce in this area. Results of the research will also be incorporated into demonstrations performed by the PI in his fluid dynamics laboratory, for audiences at the graduate, undergraduate, and high school levels.
涡旋(如与中纬度天气系统相关的涡旋)和平均气流(特别是中纬度急流)之间的相互作用是大气环流中一个长期存在的课题。 很明显,急流和涡流强烈地相互作用,但传统的理论来解释它们的相互作用是有限的,因为,出于数学原因,他们假设涡流是平均流的小振幅扰动。 首席研究员(PI)开发了一种适用于大振幅涡流的涡流-平均流相互作用理论,该奖项下进行的工作旨在探索这一新理论的含义。 新的理论将被应用于1)评估气候状态的非保守驱动(辐射强迫,摩擦,混合等)。通过仔细记录和分析缓慢变化的参考状态; 2)量化斜压涡旋的稳定作用(“斜压平差”),比较观测到的纬向平均时均状态的线性稳定性和由理论导出的无涡参考状态的线性稳定性; 3)将环形模态变率表征为纬向平均纬向风和波浪活动密度的共变,(4)归纳了Rossby波破裂的判据,并用数值模拟和气象再分析对理论预报进行了检验; 5)进一步推广了纬向变化平均流的波浪破碎准则,其更广泛的影响是,涡均流理论及其衍生的诊断工具可以应用于更广泛的流类,包括平流层,对流层,和海洋。 此外,该项目将支持和培训两名研究生,从而发展该领域的科学劳动力。 研究结果也将纳入PI在其流体动力学实验室进行的演示中,供研究生,本科生和高中生观众使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noboru Nakamura其他文献

GEOMETRIC MEANS OF POSITIVE OPERATORS II
正算子的几何均值 II
  • DOI:
    10.32219/isms.69.1_35
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Saichi Izumino;Noboru Nakamura
  • 通讯作者:
    Noboru Nakamura
Fire Retardancy of Fire-retardant-impregnated Wood after Natural Weathering II.
自然风化后阻燃剂浸渍木材的阻燃性能 II.
  • DOI:
    10.2488/jwrs.66.31
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Masayuki Kawarasaki;Ryoichi Hiradate;Y. Hirabayashi;S. Kikuchi;Y. Ohmiya;Jaeyoung Lee;Masaki Noaki;Noboru Nakamura
  • 通讯作者:
    Noboru Nakamura
Rare earth elements in metagabbros from the Mid-Atlantic Ridge and their possible implications for the genesis of alkali olivine basalts as well as the lizard peridotite
Weighted geometric means of positive operators
正算子的加权几何平均值
  • DOI:
    10.5666/kmj.2010.50.2.213
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Saichi Izumino;Noboru Nakamura
  • 通讯作者:
    Noboru Nakamura
Proofs of operator monotonicity of some functions by using Lowner's integral representation
使用 Lowner 积分表示证明某些函数的算子单调性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noboru Nakamura
  • 通讯作者:
    Noboru Nakamura

Noboru Nakamura的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noboru Nakamura', 18)}}的其他基金

Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
  • 批准号:
    2406927
  • 财政年份:
    2024
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Standard Grant
Quantifying Sources and Sinks of Rossby Wave Activity in the Atmosphere
量化大气中罗斯贝波活动的源和汇
  • 批准号:
    2154523
  • 财政年份:
    2022
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Standard Grant
Large Wave Events in a Changing Climate
气候变化中的大波浪事件
  • 批准号:
    1909522
  • 财政年份:
    2019
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Standard Grant
Rossbypalooza 2018: A Student-led Workshop on Understanding Climate through Simple Models; Chicago, Illinois; June 11-23, 2018
Rossbypalooza 2018:由学生主导的通过简单模型了解气候的研讨会;
  • 批准号:
    1810964
  • 财政年份:
    2018
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Standard Grant
"Rossbypalooza", A Student-led Workshop at the Interface of Climate Dynamics and Statistics; Chicago, Illinois; July 25-29, 2016
“Rossbypalooza”,由学生主导的气候动力学与统计接口研讨会;
  • 批准号:
    1603336
  • 财政年份:
    2016
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Standard Grant
Wave Activity Budget and the Variabilities of the Extratropical Climate
波浪活动预算和温带气候的变化
  • 批准号:
    1563307
  • 财政年份:
    2016
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Standard Grant
Eddy-Jet Interaction and Climate
涡流喷射相互作用和气候
  • 批准号:
    0750916
  • 财政年份:
    2008
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Standard Grant
Workshop on Teaching Weather and Climate Using Laboratory Experiments; Chicago, IL; Summer 2008
利用实验室实验进行天气和气候教学讲习班;
  • 批准号:
    0744095
  • 财政年份:
    2008
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Standard Grant
Theoretical and Numerical Investigations of the Earth's Midlatitude Tropopause
地球中纬度对流层顶的理论和数值研究
  • 批准号:
    0230903
  • 财政年份:
    2003
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Standard Grant
Annual and Interannual Variabilities in the Kinematics and Dynamics of the Polar Stratosphere
极地平流层运动学和动力学的年度和年际变化
  • 批准号:
    9980676
  • 财政年份:
    2000
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Continuing Grant

相似海外基金

Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
  • 批准号:
    2334171
  • 财政年份:
    2024
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Continuing Grant
Large Amplitude Oscillatory Extension (LAOE)
大振幅振荡扩展 (LAOE)
  • 批准号:
    24K07332
  • 财政年份:
    2024
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Lensless quantitative complex-amplitude imaging using a designed point spread function
使用设计的点扩散函数进行无透镜定量复振幅成像
  • 批准号:
    23K04615
  • 财政年份:
    2023
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large amplitude fluctuations in flow over mountains
山区流量波动幅度大
  • 批准号:
    23H01240
  • 财政年份:
    2023
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Wave Amplitude and Phase Manipulable Microwave Transmission Line
波幅和相位可操纵微波传输线
  • 批准号:
    2247470
  • 财政年份:
    2023
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Standard Grant
脳波Phase Amplitude Coupling解析を利用した麻酔深度モニターの開発
脑电图相位幅度耦合分析麻醉深度监测仪的研制
  • 批准号:
    23K15595
  • 财政年份:
    2023
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
てんかんの手術中脳波による切除域決定法の開発
开发癫痫手术中脑电图确定切除区域的方法
  • 批准号:
    22KJ0323
  • 财政年份:
    2023
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of ultrasound field generator with large apertures embedded in indoor environment by electronic control of emission amplitude distribution
通过电子控制发射幅度分布开发嵌入室内环境的大孔径超声场发生器
  • 批准号:
    23K18488
  • 财政年份:
    2023
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of transportation noise prediction method considering frequency and amplitude modulation due to sound source movement
考虑声源移动引起的频率和幅度调制的交通噪声预测方法的开发
  • 批准号:
    22KJ1901
  • 财政年份:
    2023
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Sensory characteristics and evaluation index of amplitude-modulated low-frequency sound in wind turbine noise
风电机组噪声中调幅低频声的感官特征及评价指标
  • 批准号:
    23K04149
  • 财政年份:
    2023
  • 资助金额:
    $ 56.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了