Extending the Usefulness of Time-Dependent Density Functional Theory: Dynamics, Excitations, and Coupling to Ions

扩展瞬态密度泛函理论的实用性:动力学、激发和离子耦合

基本信息

  • 批准号:
    1152784
  • 负责人:
  • 金额:
    $ 41.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-02-01 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

The PI will develop new approaches to several of the most challenging problems in time-dependent density functional methods today. The projects involve three areas: electron dynamics in strong fields, excitations, and coupled electron-ion dynamics. A novel semiclassical approach to electron correlation in dynamics will be developed and applied to strong-field processes, specifically electronic quantum control and ionization. This is an area in which traditional wavefunction methods are too computationally expensive yet density-functional approximations suffer from lack of memory, need for additional observable functionals, and the inability to change occupation numbers. The proposed method addresses all of these problems. New non-empirical functionals will be derived and tested to study long-range charge-transfer excitations and double-excitations, which conventional density functional approximations fail to capture, leading to globally accurate potential energy surfaces. Methods involving semiclassical propagation of nuclei coupled to electrons, starting from first-principles, will be derived, analyzed and tested, to treat correlated electron nuclear dynamics. This work will impact wide-ranging phenomena in chemical physics, atomic and molecular physics, biomolecules, and materials physics.The research will advance our fundamental understanding of the roles played by electron interactions, dynamics and excitations in a variety of areas such as chemical physics, atomic and molecular physics, and materials science, including solar cell research. New tools for computations in these fields will be developed. The research brings together density functional methods, today's workhorse for computations involving many electrons, and semiclassical methods, usually used to simplify and interpret quantum dynamics. These advances to time-dependent density functional theory will overcome earlier barriers to its use in calculation of accurate global molecular dynamics and spectroscopy. The students will be exposed to cutting-edge fundamental theoretical research in chemistry and physics. The existing minority-serving programs at Hunter will be leveraged to promote the development of underrepresented minority scientists. Mentoring, both within the group and via a Physics Club activity, will help guide and project postdoctoral fellows, graduate students and undergraduate students towards scientifically-oriented futures. They will be exposed to innovative teaching methods the PI uses for undergraduate teaching.
PI将开发新的方法来解决当今时间依赖密度泛函方法中最具挑战性的几个问题。这些项目涉及三个领域:强场中的电子动力学,激发和耦合电子-离子动力学。一种新的半经典方法,电子关联动力学将开发和应用于强场过程,特别是电子量子控制和电离。这是一个领域,在传统的波函数方法计算太昂贵,但密度泛函近似遭受缺乏内存,需要额外的可观察的泛函,并无法改变占领数。所提出的方法解决了所有这些问题。新的非经验泛函将推导和测试,以研究远程电荷转移激发和双激发,传统的密度泛函近似无法捕捉,导致全球准确的势能面。方法涉及半经典传播的核耦合到电子,从第一性原理开始,将导出,分析和测试,治疗相关的电子核动力学。这项工作将影响化学物理、原子和分子物理、生物分子和材料物理中的广泛现象。这项研究将推进我们对电子相互作用、动力学和激发在化学物理、原子和分子物理以及材料科学(包括太阳能电池研究)等各个领域中所起作用的基本理解。将开发这些领域的新计算工具。这项研究汇集了密度泛函方法,今天的主力计算涉及许多电子,和半经典方法,通常用于简化和解释量子动力学。含时密度泛函理论的这些进展将克服其在精确的全球分子动力学和光谱计算中的早期障碍。学生将接触到化学和物理学的前沿基础理论研究。 亨特现有的少数民族服务计划将被用来促进代表性不足的少数民族科学家的发展。指导,无论是在小组内,并通过物理俱乐部的活动,将有助于引导和项目博士后研究员,研究生和本科生走向科学导向的未来。他们将接触到PI用于本科教学的创新教学方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neepa Maitra其他文献

Neepa Maitra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neepa Maitra', 18)}}的其他基金

Molecules in Classical and Quantized Fields: Developing Time-dependent Density Functional and Exact Factorization Methods for Electrons, Ions, and Photons
经典和量子化领域中的分子:开发电子、离子和光子的时间相关密度泛函和精确分解方法
  • 批准号:
    2154829
  • 财政年份:
    2022
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Molecules in Classical and Quantized Fields: Improving Time-Dependent Density Functional Approximations and Correlated Electron-Ion Methods
经典和量子化领域中的分子:改进瞬态密度泛函近似和相关电子离子方法
  • 批准号:
    1940333
  • 财政年份:
    2019
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Molecules in classical and quantized fields: Improving time-dependent density functional approximations and correlated electron-ion methods
经典和量子化领域中的分子:改进依赖时间的密度泛函近似和相关电子离子方法
  • 批准号:
    1900349
  • 财政年份:
    2019
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Molecules in Non-Perturbative Fields: Improving Time-Dependent Density Functional Approximations and Electron-Ion Correlation Methods
非微扰场中的分子:改进瞬态密度泛函近似和电子-离子相关方法
  • 批准号:
    1566197
  • 财政年份:
    2016
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
CAREER: Time-Dependent Density Functional Theory for Atoms, Molecules, and Quantum Dots
职业:原子、分子和量子点的时变密度泛函理论
  • 批准号:
    0547913
  • 财政年份:
    2006
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Continuing Grant

相似海外基金

Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Feminist Regulatory Relationships with 'the Usefulness' of the Law and Sex
女权主义监管与法律和性的“有用性”的关系
  • 批准号:
    ES/Y009851/1
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Fellowship
Expression mechanism of Schlafen11 in ulcerative colitis and its usefulness as a biomarker
Schlafen11在溃疡性结肠炎中的表达机制及其作为生物标志物的用途
  • 批准号:
    23K15029
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An Empirical Analysis of Simplified Nutrition Labeling and Its Usefulness: Using Behavioral Insights
简化营养标签及其实用性的实证分析:利用行为洞察
  • 批准号:
    23K12476
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Usefulness of Social Workers' Harm Reduction for Alcohol-Related Problems
社会工作者减少伤害对酒精相关问题的有用性
  • 批准号:
    23K12650
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a character strengths intervention program in school that combines effectiveness and usefulness for students' well-being
在学校制定性格优势干预计划,将有效性和实用性结合起来,以促进学生的福祉
  • 批准号:
    23K12873
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Usefulness of nerve growth factor as a new stress-related biomarker in health care
神经生长因子作为新的压力相关生物标志物在医疗保健中的用途
  • 批准号:
    23K09824
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of low grain-filling mechanism and evaluation of its usefulness toward the development of new rice cultivar for whole crop silage
低灌浆机理分析及其对整株青贮水稻新品种开发的实用性评价
  • 批准号:
    23K05182
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Usefulness of pulmonary oxygen consumption caliculated by indirect calorimetry in the evaluation of severe respiratory disease
间接量热法计算的肺耗氧量在评估严重呼吸系统疾病中的有用性
  • 批准号:
    23K08363
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluate the usefulness and effectiveness of the score as an element of gamification in educational setting
评估分数作为教育环境中游戏化元素的有用性和有效性
  • 批准号:
    2882108
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了