Collaborative Research: Mechanisms of Termination of Viral DNA Packaging

合作研究:病毒DNA包装终止机制

基本信息

  • 批准号:
    1158495
  • 负责人:
  • 金额:
    $ 35.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

Intellectual Merit: For many large DNA viruses, the production of new viruses requires use of a protein molecular motor, powered by chemical energy from ATP, to force the replicated viral DNA into the preformed empty viral shell, which is also made of protein. The viral DNA is replicated as a continuous long chain that must be cut into complete, unit-length pieces to provide each new viral particle with a complete DNA genome. The protein motor that packages the DNA also cuts the DNA chain to the correct length. For the herpes viruses and many bacterial viruses, the DNA is cut at specific sites to generate viral DNA having correct ends. Packaging begins with a precise initial cut, which generates the DNA end that is threaded into the shell by the motor. Once a complete viral DNA has been packaged, the motor nuclease again precisely cuts the DNA to terminate the DNA packaging cycle. This project aims to determine the mechanism by which the terminal DNA cut is precisely made. The model virus to be used in these studies is called "lambda," and it infects the bacterium E. coli. It was chosen because it is one of the most favorable systems for investigating this mechanism. Lambda has a special recognition site, adjacent to the proper cut site, to stop the packaging motor, so that the terminating cut is precisely made. The efficiency of termination increases with the length of the packaged DNA. As the shell fills, the resistance to packaging more DNA increases, the velocity of packaging slows, and more energy is required for the motor to continue packaging. Models to explain how termination efficiency is controlled by the extent of packaging emphasize (1) the extent of shell filling, (2) the packaging energy required, or (3) that packaging velocity regulates termination. In this project, each of these factors will be studied to determine which controls the termination process. These studies will be facilitated by the use of "optical tweezers," a powerful, biophysical technique in which single DNA molecules and individual virus shells are attached to plastic microspheres and manipulated with focused laser beams. Packaging of a single DNA molecule can be measured by detecting the movement of the microspheres and the forces acting on them. The rate of DNA movement, the energy required for packaging, and the extent of packaging will be manipulated through genetic, biochemical, and biophysical perturbations. The roles of a putative shell-stabilizing protein and of various regions of the motor proteins will also be explored using genetic and biochemical methods. The project will increase understanding of how viruses move, cut and package DNA. Broader Impacts: Viral DNA packaging motors not only play an important role in the assembly of many viruses, but very likely also share structural features and mechanisms with many other cellular, DNA-processing enzymes, including helicases, bacterial chromosome segregation motors, and endonucleases. A strong interdisciplinary educational environment, integrating concepts and methods from the biological and physical sciences, will be ensured for participating graduate and undergraduate students. The project is led by two experienced researchers with complementary research backgrounds in biophysics and molecular biology, and strong records of research mentoring of undergraduates and students from diverse backgrounds. New undergraduate biophysics course materials will also be developed in the course of the project. Educational materials for K-12 science education will be developed in collaboration with the R.H. Fleet Science Center.This project is jointly funded by the Genetic Mechanisms cluster in the Division of Molecular and Cellular Biosciences and by the Chemistry of Life Processes program in the Division of Chemistry.
智力优势:对于许多大的DNA病毒来说,新病毒的产生需要使用蛋白质分子马达,由ATP的化学能提供动力,迫使复制的病毒DNA进入预先形成的空病毒外壳,这也是由蛋白质组成的。病毒DNA复制为连续的长链,必须将其切割成完整的单位长度片段,以提供具有完整DNA基因组的每个新病毒颗粒。包装DNA的蛋白质马达也会将DNA链切割到正确的长度。 对于疱疹病毒和许多细菌病毒,DNA在特定位点被切割以产生具有正确末端的病毒DNA。 包装从精确的初始切割开始,这会产生DNA末端,并通过电机将其穿入外壳。 一旦完整的病毒DNA被包装,马达核酸酶再次精确地切割DNA以终止DNA包装循环。 该项目旨在确定末端DNA切割精确进行的机制。在这些研究中使用的模型病毒被称为“λ”,它感染细菌E。杆菌之所以选择它,是因为它是研究这种机制的最有利的系统之一。 Lambda有一个特殊的识别部位,与正确的切割部位相邻,用于停止包装电机,以便精确地进行端接切割。 终止效率随着包装DNA的长度而增加。 随着外壳的填充,包装更多DNA的阻力增加,包装的速度减慢,马达需要更多的能量来继续包装。 解释终止效率如何受包装程度控制的模型强调(1)壳填充的程度,(2)所需的包装能量,或(3)包装速度调节终止。在本项目中,将研究这些因素中的每一个,以确定哪些控制终止过程。 这些研究将通过使用“光镊”来促进,这是一种强大的生物物理技术,其中单个DNA分子和单个病毒外壳附着在塑料微球上,并用聚焦激光束进行操纵。 单个DNA分子的包装可以通过检测微球的运动和作用在它们上的力来测量。DNA运动的速率、包装所需的能量和包装的程度将通过遗传、生物化学和生物物理扰动来操纵。 一个假定的壳稳定蛋白和马达蛋白的各个区域的作用也将使用遗传和生物化学方法进行探索。该项目将增加对病毒如何移动,切割和包装DNA的了解。 更广泛的影响:病毒DNA包装马达不仅在许多病毒的组装中起重要作用,而且很可能与许多其他细胞DNA加工酶(包括解旋酶、细菌染色体分离马达和核酸内切酶)共享结构特征和机制。一个强大的跨学科的教育环境,从生物和物理科学的概念和方法相结合,将确保参与研究生和本科生。该项目由两名经验丰富的研究人员领导,他们在生物物理学和分子生物学方面具有互补的研究背景,并为来自不同背景的本科生和学生提供了良好的研究指导记录。新的本科生生物物理学课程教材也将在该项目的过程中开发。将与R.H.合作开发K-12科学教育教材。该项目由分子和细胞生物科学司的遗传机制组和化学司的生命过程化学方案共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Feiss其他文献

Insights on Viral DNA Packaging Motor Mechanisms from the Effects of Motor Residue Changes on Single-Molecule Packaging Dynamics
  • DOI:
    10.1016/j.bpj.2017.11.3203
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Douglas E. Smith;Mariam Ordyan;Damian delToro;Jean Sippy;Michael Feiss
  • 通讯作者:
    Michael Feiss
On maturation of the bacteriophage lambda chromosome
  • DOI:
    10.1007/bf00267099
  • 发表时间:
    1973-12-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Michael Feiss;Thomas Margulies
  • 通讯作者:
    Thomas Margulies
Decision-Making in Bacteriophage Lambda: A View From the Single Phage
  • DOI:
    10.1016/j.bpj.2009.12.086
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lanying Zeng;Samuel O. Skinner;Jean Sippy;Michael Feiss;Ido Golding
  • 通讯作者:
    Ido Golding
The bacteriophage λ cohesive end site: Isolation of spacing/substitution mutations that result in dependence on Escherichia coli integration host factor
  • DOI:
    10.1007/bf00322459
  • 发表时间:
    1988-04-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Greg Miller;Michael Feiss
  • 通讯作者:
    Michael Feiss

Michael Feiss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Feiss', 18)}}的其他基金

DNA Recognition during DNA Packaging by the Lambda-like Bacteriophages: Sites and Proteins
类 Lambda 噬菌体在 DNA 包装过程中的 DNA 识别:位点和蛋白质
  • 批准号:
    0717620
  • 财政年份:
    2007
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Continuing Grant
FASEB Conference: Virus Assembly
FASEB 会议:病毒组装
  • 批准号:
    9987365
  • 财政年份:
    2000
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Standard Grant
Role of Chromosome Ends in Virus Development
染色体末端在病毒发育中的作用
  • 批准号:
    7306820
  • 财政年份:
    1973
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
  • 批准号:
    2328529
  • 财政年份:
    2024
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
  • 批准号:
    2328528
  • 财政年份:
    2024
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
  • 批准号:
    2322205
  • 财政年份:
    2024
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
  • 批准号:
    2322206
  • 财政年份:
    2024
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319096
  • 财政年份:
    2024
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344766
  • 财政年份:
    2024
  • 资助金额:
    $ 35.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了