FRG: Collaborative Research: Gromov-Witten Theory
FRG:合作研究:格罗莫夫-维滕理论
基本信息
- 批准号:1159416
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since the era of Newton, mathematics has been a key tool in helping us comprehend the nature of the universe. Famous examples are calculus via Newtonian mechanics and differential geometry via Einstein's theory of general relativity. During the last twenty years, there has been a great deal of activity devoted to building a so-called string-theoretic model of the universe, which incorporates some of the most sophisticated mathematics. The subject of Gromov-Witten theory was born twenty years ago during a period of intensive interaction between mathematics and physics. Since then Gromov-Witten theory has established itself as a central area in both geometry and physics. At the same time, it has expanded greatly in its scope to many diverse areas of mathematics, ranging from the classical topic of Hurwitz theory to the modern area of Donaldson-Thomas invariants (the sheaf-theoretic counterpart of Gromov-Witten theory). Despite its success, many central problems remain unsolved. Two notable examples are the computation of higer genus Gromov-Witten invariants of compact Calabi-Yau manifolds and the precise relation between Gromov-Witten and Donaldson-Thomas invariants. The resolution of these problems is of great importance for geometry and physics. In this proposal, a team of the best experts in the world is assembled to attack these central problems. In addition, the PIs propose to develop technology to study a variety of questions relating Gromov-Witten theory to enumerative algebraic geometry, symplectic geometry and mathematical physics. The PIs hope to make important and substantial contributions to these areas of mathematics, and their interrelations.This project is interdisciplinary in nature, in that both physical and mathematical ideas play central roles. In this sense it adds to the current trend of interaction between mathematics and physics. This project emphasizes teamwork and collaboration. Through research seminars, organizing and participating in national and international conferences, this proposal will also enhance the training of undergraduate and graduate students, as well as postdoctoral fellows. There will be a number of research publications that will help in introducing students to this exciting area of mathematics.This award is cofunded by the Algebra and Number theory and the Topology programs of DMS.
自牛顿时代以来,数学一直是帮助我们理解宇宙本质的关键工具。著名的例子是通过牛顿力学的微积分和通过爱因斯坦的广义相对论的微分几何。在过去的二十年里,人们进行了大量的活动致力于建立所谓的宇宙弦理论模型,其中包含了一些最复杂的数学知识。格罗莫夫-维滕理论这一学科诞生于二十年前,正值数学与物理学密切互动的时期。 从那时起,格罗莫夫-维滕理论就确立了自己作为几何学和物理学的中心领域的地位。 与此同时,它的范围已大大扩展到数学的许多不同领域,从赫尔维茨理论的经典主题到唐纳森-托马斯不变量的现代领域(格罗莫夫-维滕理论的层理论对应物)。尽管取得了成功,但许多核心问题仍未解决。两个值得注意的例子是紧 Calabi-Yau 流形的高属 Gromov-Witten 不变量的计算以及 Gromov-Witten 和 Donaldson-Thomas 不变量之间的精确关系。这些问题的解决对于几何和物理学具有重要意义。在这个提案中,聚集了一个由世界上最好的专家组成的团队来解决这些核心问题。此外,PI 还提议开发技术来研究与格罗莫夫-维滕理论、枚举代数几何、辛几何和数学物理相关的各种问题。 PI 希望对这些数学领域及其相互关系做出重要而实质性的贡献。该项目本质上是跨学科的,因为物理和数学思想都发挥着核心作用。 从这个意义上说,它增加了当前数学和物理相互作用的趋势。该项目强调团队合作和协作。通过研究研讨会、组织和参加国内和国际会议,该提案还将加强对本科生和研究生以及博士后的培训。将会有许多研究出版物帮助学生了解这个令人兴奋的数学领域。该奖项由 DMS 的代数和数论以及拓扑项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Okounkov其他文献
Publisher Correction to: Noncommutative Geometry of Random Surfaces, Funct. Anal. Appl. 58:1 (2024), 65–79
- DOI:
10.1134/s0016266324030110 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:0.700
- 作者:
Andrei Okounkov - 通讯作者:
Andrei Okounkov
A new approach to representation theory of symmetric groups
- DOI:
10.1007/bf02433451 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Andrei Okounkov;Anatoly Vershik - 通讯作者:
Anatoly Vershik
Andrei Okounkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Okounkov', 18)}}的其他基金
FRG: Collaborative Research: Crossing the Walls in Enumerative Geometry
FRG:协作研究:跨越枚举几何的墙壁
- 批准号:
1564497 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
- 批准号:
0853560 - 财政年份:2009
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Random Partitions, Random Matrices, and Combinatorics of Moduli Spaces of Curves
曲线模空间的随机划分、随机矩阵和组合
- 批准号:
0441083 - 财政年份:2004
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Random Partitions, Random Matrices, and Combinatorics of Moduli Spaces of Curves
曲线模空间的随机划分、随机矩阵和组合
- 批准号:
0100593 - 财政年份:2001
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Asymptotic Problems in Representation Theory
表示论中的渐近问题
- 批准号:
0096246 - 财政年份:1999
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Asymptotic Problems in Representation Theory
表示论中的渐近问题
- 批准号:
9801466 - 财政年份:1998
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant