The Versatility of Integrability
可积性的多功能性
基本信息
- 批准号:1111152
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-03-15 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ideas and methods of integrable systems played a key role in many celebrated as well as recent advances in algebraic geometry, mathematical physics, probability, and many other areas of pure and applied mathematics. As a particularly striking example one may mention Krichever's recent proof of the famous Welters' conjecture, characterizing Jacobians of algebraic curves among all principally polarized abelian varieties. The conference will bring together experts and young researchers, mathematicians and physicists, people with different backgrounds and different takes on integrable systems, to discuss the latest achievements in this very dynamic field. This conference will be held at at Columbia University in New York, NY, on May 4-7, 2011.A differential equation is called integrable if its solutions may be given by a closed formula, without a recourse to numerical or other approximations. Many highly nontrivial integrable equations were discovered and analyzed both classically and recently. They describe important phenomena in both classical (e.g. certain water waves) and modern theoretical physics and connect to some of the deepest mathematical structures known in pure mathematics. In applied mathematics, they form a basis of perturbative understanding of nearby problems and give a powerful calibration tool for numerical investigations. This conference will bring together the experts working on various aspects of integrability, and will aim to advance our understanding of integrable systems and their applications in algebra, geometry, and physics.
可积系统的思想和方法在代数几何、数学物理、概率以及纯数学和应用数学的许多其他领域的许多著名和最新进展中发挥了关键作用。 作为一个特别引人注目的例子,人们可以提到克里切弗最近对著名的韦尔特斯猜想的证明,该猜想描述了所有主要极化的阿贝尔变体中代数曲线的雅可比行列式。 会议将汇集专家和年轻研究人员、数学家和物理学家、具有不同背景和对可积系统有不同看法的人们,讨论这个充满活力的领域的最新成就。本次会议将于 2011 年 5 月 4 日至 7 日在纽约哥伦比亚大学举行。 如果微分方程的解可由封闭公式给出,而不需要借助数值或其他近似值,则该微分方程称为可积方程。经典和最近发现并分析了许多高度非平凡的可积方程。 它们描述了经典物理学(例如某些水波)和现代理论物理学中的重要现象,并与纯数学中已知的一些最深刻的数学结构联系起来。在应用数学中,它们构成了对附近问题的微扰理解的基础,并为数值研究提供了强大的校准工具。这次会议将汇集研究可积性各个方面的专家,旨在增进我们对可积系统及其在代数、几何和物理学中的应用的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Okounkov其他文献
Publisher Correction to: Noncommutative Geometry of Random Surfaces, Funct. Anal. Appl. 58:1 (2024), 65–79
- DOI:
10.1134/s0016266324030110 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:0.700
- 作者:
Andrei Okounkov - 通讯作者:
Andrei Okounkov
A new approach to representation theory of symmetric groups
- DOI:
10.1007/bf02433451 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Andrei Okounkov;Anatoly Vershik - 通讯作者:
Anatoly Vershik
Andrei Okounkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Okounkov', 18)}}的其他基金
FRG: Collaborative Research: Crossing the Walls in Enumerative Geometry
FRG:协作研究:跨越枚举几何的墙壁
- 批准号:
1564497 - 财政年份:2016
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Gromov-Witten Theory
FRG:合作研究:格罗莫夫-维滕理论
- 批准号:
1159416 - 财政年份:2012
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
- 批准号:
0853560 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Random Partitions, Random Matrices, and Combinatorics of Moduli Spaces of Curves
曲线模空间的随机划分、随机矩阵和组合
- 批准号:
0441083 - 财政年份:2004
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Random Partitions, Random Matrices, and Combinatorics of Moduli Spaces of Curves
曲线模空间的随机划分、随机矩阵和组合
- 批准号:
0100593 - 财政年份:2001
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Asymptotic Problems in Representation Theory
表示论中的渐近问题
- 批准号:
0096246 - 财政年份:1999
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Asymptotic Problems in Representation Theory
表示论中的渐近问题
- 批准号:
9801466 - 财政年份:1998
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似海外基金
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Fellowship
Angular Cherednik Algebras and Integrability
Angular Cherednik 代数和可积性
- 批准号:
EP/W013053/1 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Research Grant
Geometry and Integrability of Random Processes
随机过程的几何和可积性
- 批准号:
2346685 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Global behavior of discrete surfaces via integrability
通过可积性实现离散曲面的全局行为
- 批准号:
23K03091 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
problem of integrability in the context of the AdS/CFT correspondence
AdS/CFT 对应关系中的可积性问题
- 批准号:
2816508 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Studentship
Extending the geometric theory of discrete Painleve equations - singularities, entropy and integrability
扩展离散 Painleve 方程的几何理论 - 奇点、熵和可积性
- 批准号:
22KF0073 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nonlinear systems: algebraic structures and integrability
非线性系统:代数结构和可积性
- 批准号:
EP/X018784/1 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Research Grant
symmetry and integrability of ADE matrix model probing critical phenomena of supersymmetric gauge theory by symmetry and integrability
ADE 矩阵模型的对称性和可积性 通过对称性和可积性探讨超对称规范理论的关键现象
- 批准号:
23K03394 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
- 批准号:
22H01130 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)