FRG: Collaborative Research: Variational multiscale approaches to biomolecular structure, dynamics and transport

FRG:协作研究:生物分子结构、动力学和运输的变分多尺度方法

基本信息

  • 批准号:
    1159937
  • 负责人:
  • 金额:
    $ 25.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

A major feature of biological science in the 21st Century will be its transition from a phenomenological and descriptive discipline to a quantitative and predictive one. Revolutionary opportunities have emerged for mathematically driven advances in biological research. Experimental exploration of self-organizing biomolecular systems, such as HIV viruses, molecular motors and proteins in Alzheimer's disease, has been a dominating driven force in scientific discovery and innovation in the past few decades. However, the emergence of complexity in self-organizing biological systems poses fundamental challenges to their quantitative description because of the excessively high dimensionality. This Focused Research Group (FRG) will provide a platform, led by leading researchers from Michigan State University, University of Wisconsin-Madison and Pennsylvania State University, who will synergistically merge their expertise in theoretical modeling, scientific computing and mathematical analysis, for quantitative descriptions of biomolecular systems. The research addresses grand challenges in the structure, function and dynamics of self-organizing biomolecular systems due to exceptionally massive data sets. These challenges are tackled through the introduction of new variational multiscale models, which reduces the dimensionality and number of degrees of freedom by a macroscopic continuum description of the aquatic/membrane environment, and a microscopic discrete description of biomolecules. Additionally, to further reduce the dimensionality of excessively large biomolecular systems, the investigators introduce a coarse-grained approach based on the density cluster dynamics which extracts stable manifolds in molecular dynamics simulations. This FRG project offers innovative new approaches to the massive data management, dimensionality reduction, computer simulation, theoretical modeling and mathematical analysis of biomolecular systems.This project is a timely effort to promote the quantitative transition of biological science, which will lead to emerging new fields in both mathematical and biological sciences. In particular, the proposed effort will significantly strengthen the leading role that the U.S. researchers can play in mathematical molecular biosciences by aggressively pursuing cutting-edge research and collaboratively training a new generation of mathematicians in this emerging interdisciplinary field. Three annual workshops and international meeting will be held in Michigan State (Year 1), Wisconsin (Year 2) and Penn State (Year 3) to strengthen the collaboration and extend the societal impact.
21世纪生物科学的一个主要特征将是从现象学和描述性学科向定量和预测性学科的转变。 革命性的机会已经出现了数学驱动的生物学研究的进展。自组织生物分子系统的实验探索,如艾滋病毒,分子马达和阿尔茨海默氏病中的蛋白质,在过去几十年中一直是科学发现和创新的主导驱动力。 然而,自组织生物系统的复杂性的出现提出了根本性的挑战,因为它们的定量描述过高的维数。 这个重点研究小组(FRG)将提供一个平台,由来自密歇根州立大学,威斯康星大学麦迪逊分校和宾夕法尼亚州立大学的领先研究人员领导,他们将协同合并他们在理论建模,科学计算和数学分析方面的专业知识,用于生物分子系统的定量描述。 该研究解决了由于异常庞大的数据集而导致的自组织生物分子系统的结构,功能和动力学方面的巨大挑战。这些挑战通过引入新的变分多尺度模型来解决,该模型通过对水/膜环境的宏观连续描述和对生物分子的微观离散描述来降低自由度的维数和数量。此外,为了进一步降低过大的生物分子系统的维数,研究人员引入了一种基于密度簇动力学的粗粒度方法,该方法在分子动力学模拟中提取稳定的流形。该项目为生物分子系统的海量数据管理、降维、计算机模拟、理论建模和数学分析提供了创新性的新方法,为促进生物科学的定量化过渡,从而在数学和生物科学中开辟新的领域做出了及时的努力。特别是,拟议的努力将大大加强美国研究人员在数学分子生物科学中的主导作用,积极开展前沿研究,并在这一新兴的跨学科领域合作培训新一代数学家。 三个年度研讨会和国际会议将在密歇根州(第一年),威斯康星州(第二年)和宾夕法尼亚州(第三年)举行,以加强合作和扩大社会影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chun Liu其他文献

Modulation of lung molecular biomarkers by β‐carotene in the Physicians' Health Study
医生健康研究中β-胡萝卜素对肺分子生物标志物的调节
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Chun Liu;Xiang‐Dong Wang;L. Mucci;J. M. Gaziano;Shumin M. Zhang
  • 通讯作者:
    Shumin M. Zhang
Confronting heavy tau neutrinos with neutrino oscillations
面对重 tau 中微子和中微子振荡
  • DOI:
    10.1142/s0217732301005023
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Chun Liu
  • 通讯作者:
    Chun Liu
Automated Construction and Application of Operations and Maintenance Knowledge Graph
运维知识图谱自动化构建与应用
Forecasting Realized Volatility : A Bayesian Model Averaging Approach
预测已实现波动率:贝叶斯模型平均方法
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chun Liu
  • 通讯作者:
    Chun Liu
A simple and efficient protocol for the palladium-catalyzed ligand-free Suzuki reaction at room temperature in aqueous DMF
室温下 DMF 水溶液中钯催化无配体 Suzuki 反应的简单高效方案
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Chun Liu;Qijian Ni;Fanying Bao;Jieshan Qiu
  • 通讯作者:
    Jieshan Qiu

Chun Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chun Liu', 18)}}的其他基金

Institute for Data, Econometrics, Algorithms and Learning (IDEAL)
数据、计量经济学、算法和学习研究所 (IDEAL)
  • 批准号:
    2216926
  • 财政年份:
    2022
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Microstructure by Design: Integrating Grain Growth Experiments, Data Analytics, Simulation, and Theory
合作研究:DMREF:微观结构设计:整合晶粒生长实验、数据分析、模拟和理论
  • 批准号:
    2118181
  • 财政年份:
    2021
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale Modeling and Numerical Methods for Charge Transport in Ion Channels
合作研究:离子通道中电荷传输的多尺度建模和数值方法
  • 批准号:
    1950868
  • 财政年份:
    2020
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Topics in Complex Fluids and Biophysiology: the Energetic Variational Approaches
复杂流体和生物生理学主题:能量变分方法
  • 批准号:
    1714401
  • 财政年份:
    2017
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Energetic Variational Approaches in Complex Fluids and Electrophysiology
复杂流体和电生理学中的能量变分方法
  • 批准号:
    1759536
  • 财政年份:
    2017
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Topics in Complex Fluids and Biophysiology: the Energetic Variational Approaches
复杂流体和生物生理学主题:能量变分方法
  • 批准号:
    1759535
  • 财政年份:
    2017
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Energetic Variational Approaches in Complex Fluids and Electrophysiology
复杂流体和电生理学中的能量变分方法
  • 批准号:
    1412005
  • 财政年份:
    2014
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Advanced Numberical Techniques for the Simulation of Magnetohydrodynamics
合作研究:磁流体动力学模拟的先进数值技术
  • 批准号:
    1216938
  • 财政年份:
    2012
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Energetic Variational Approaches in Complex Fluids
复杂流体中的能量变分方法
  • 批准号:
    1109107
  • 财政年份:
    2011
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Topics in Mathematical Theories of Elastic Complex Fluids
弹性复杂流体数学理论专题
  • 批准号:
    0707594
  • 财政年份:
    2007
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了